metric / llm_as_judge_utils.py
Elron's picture
Upload folder using huggingface_hub
24df49f verified
from typing import Dict
from .llm_as_judge_constants import (
EVALUATORS_METADATA,
MODEL_RENAMINGS,
EvaluatorMetadata,
EvaluatorNameEnum,
ModelProviderEnum,
)
def get_parsed_context(context: Dict[str, str]):
return (
"\n".join([f"{key}: {value}" for key, value in context.items()])
if len(context) > 1
or not (len(context) == 1 and next(iter(context.keys())).lower() == "context")
else context[next(iter(context.keys()))]
)
def get_evaluator_metadata(
name: EvaluatorNameEnum
) -> EvaluatorMetadata: # , evaluator_type: EvaluatorTypeEnum) -> EvaluatorMetadata:
evaluator_search = [
e for e in EVALUATORS_METADATA if e.name == name
] # and e.evaluator_type == evaluator_type]
if len(evaluator_search) == 0:
# raise ValueError(f'A {evaluator_type} evaluator with id {name} does not exist.')
raise ValueError(f"An evaluator with id {name} does not exist.")
if len(evaluator_search) > 1:
# raise ValueError(f'A {evaluator_type} evaluator with id {name} matched several models.')
raise ValueError(f"An evaluator with id {name} matched several models.")
return evaluator_search[0]
def rename_model_if_required(model_name: str, provider: ModelProviderEnum) -> str:
if provider in MODEL_RENAMINGS and model_name in MODEL_RENAMINGS[provider]:
return MODEL_RENAMINGS[provider][model_name]
return model_name
def rank_indexes(numbers):
# Generate the initial list of indices
indices = list(range(len(numbers)))
# Sort the indices based on the corresponding values in numbers (descending order)
sorted_indices = sorted(indices, key=lambda x: -numbers[x])
# Initialize a list to hold the rankings
rankings = [0] * len(numbers)
# Assign rankings
current_rank = 0
for i in range(len(sorted_indices)):
if i > 0 and numbers[sorted_indices[i]] != numbers[sorted_indices[i - 1]]:
current_rank = i
rankings[sorted_indices[i]] = current_rank
return rankings