|
import json |
|
from functools import lru_cache |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
from .artifact import fetch_artifact |
|
from .dataset_utils import get_dataset_artifact |
|
from .inference import InferenceEngine, LogProbInferenceEngine |
|
from .logging_utils import get_logger |
|
from .metric_utils import _compute, _inference_post_process |
|
from .operator import SourceOperator |
|
from .schema import UNITXT_DATASET_SCHEMA |
|
from .standard import StandardRecipe |
|
|
|
logger = get_logger() |
|
|
|
|
|
def load(source: Union[SourceOperator, str]): |
|
assert isinstance( |
|
source, (SourceOperator, str) |
|
), "source must be a SourceOperator or a string" |
|
if isinstance(source, str): |
|
source, _ = fetch_artifact(source) |
|
return source().to_dataset() |
|
|
|
|
|
def _get_recipe_from_query(dataset_query: str) -> StandardRecipe: |
|
dataset_query = dataset_query.replace("sys_prompt", "instruction") |
|
try: |
|
dataset_stream, _ = fetch_artifact(dataset_query) |
|
except: |
|
dataset_stream = get_dataset_artifact(dataset_query) |
|
return dataset_stream |
|
|
|
|
|
def _get_recipe_from_dict(dataset_params: Dict[str, Any]) -> StandardRecipe: |
|
recipe_attributes = list(StandardRecipe.__dict__["__fields__"].keys()) |
|
for param in dataset_params.keys(): |
|
assert param in recipe_attributes, ( |
|
f"The parameter '{param}' is not an attribute of the 'StandardRecipe' class. " |
|
f"Please check if the name is correct. The available attributes are: '{recipe_attributes}'." |
|
) |
|
return StandardRecipe(**dataset_params) |
|
|
|
|
|
def _verify_dataset_args(dataset_query: Optional[str] = None, dataset_args=None): |
|
if dataset_query and dataset_args: |
|
raise ValueError( |
|
"Cannot provide 'dataset_query' and key-worded arguments at the same time. " |
|
"If you want to load dataset from a card in local catalog, use query only. " |
|
"Otherwise, use key-worded arguments only to specify properties of dataset." |
|
) |
|
|
|
if dataset_query: |
|
if not isinstance(dataset_query, str): |
|
raise ValueError( |
|
f"If specified, 'dataset_query' must be a string, however, " |
|
f"'{dataset_query}' was provided instead, which is of type " |
|
f"'{type(dataset_query)}'." |
|
) |
|
|
|
if not dataset_query and not dataset_args: |
|
raise ValueError( |
|
"Either 'dataset_query' or key-worded arguments must be provided." |
|
) |
|
|
|
|
|
def load_recipe(dataset_query: Optional[str] = None, **kwargs) -> StandardRecipe: |
|
if isinstance(dataset_query, StandardRecipe): |
|
return dataset_query |
|
|
|
_verify_dataset_args(dataset_query, kwargs) |
|
|
|
if dataset_query: |
|
recipe = _get_recipe_from_query(dataset_query) |
|
|
|
if kwargs: |
|
recipe = _get_recipe_from_dict(kwargs) |
|
|
|
return recipe |
|
|
|
|
|
def load_dataset( |
|
dataset_query: Optional[str] = None, streaming: bool = False, **kwargs |
|
): |
|
"""Loads dataset. |
|
|
|
If the 'dataset_query' argument is provided, then dataset is loaded from a card in local |
|
catalog based on parameters specified in the query. |
|
Alternatively, dataset is loaded from a provided card based on explicitly given parameters. |
|
|
|
Args: |
|
dataset_query (str, optional): A string query which specifies a dataset to load from local catalog or name of specific recipe or benchmark in the catalog. |
|
For example: |
|
"card=cards.wnli,template=templates.classification.multi_class.relation.default". |
|
streaming (bool, False): When True yields the data as Unitxt streams dictionary |
|
**kwargs: Arguments used to load dataset from provided card, which is not present in local catalog. |
|
|
|
Returns: |
|
DatasetDict |
|
|
|
Examples: |
|
dataset = load_dataset( |
|
dataset_query="card=cards.stsb,template=templates.regression.two_texts.simple,max_train_instances=5" |
|
) # card must be present in local catalog |
|
|
|
card = TaskCard(...) |
|
template = Template(...) |
|
loader_limit = 10 |
|
dataset = load_dataset(card=card, template=template, loader_limit=loader_limit) |
|
""" |
|
recipe = load_recipe(dataset_query, **kwargs) |
|
|
|
if streaming: |
|
return recipe() |
|
|
|
return recipe().to_dataset(features=UNITXT_DATASET_SCHEMA) |
|
|
|
|
|
def evaluate(predictions, data) -> List[Dict[str, Any]]: |
|
return _compute(predictions=predictions, references=data) |
|
|
|
|
|
def post_process(predictions, data) -> List[Dict[str, Any]]: |
|
return _inference_post_process(predictions=predictions, references=data) |
|
|
|
|
|
@lru_cache |
|
def _get_produce_with_cache(dataset_query: Optional[str] = None, **kwargs): |
|
return load_recipe(dataset_query, **kwargs).produce |
|
|
|
|
|
def produce(instance_or_instances, dataset_query: Optional[str] = None, **kwargs): |
|
is_list = isinstance(instance_or_instances, list) |
|
if not is_list: |
|
instance_or_instances = [instance_or_instances] |
|
result = _get_produce_with_cache(dataset_query, **kwargs)(instance_or_instances) |
|
if not is_list: |
|
result = result[0] |
|
return result |
|
|
|
|
|
def infer( |
|
instance_or_instances, |
|
engine: InferenceEngine, |
|
dataset_query: Optional[str] = None, |
|
return_data: bool = False, |
|
return_log_probs: bool = False, |
|
return_meta_data: bool = False, |
|
**kwargs, |
|
): |
|
dataset = produce(instance_or_instances, dataset_query, **kwargs) |
|
engine, _ = fetch_artifact(engine) |
|
if return_log_probs: |
|
if not isinstance(engine, LogProbInferenceEngine): |
|
raise NotImplementedError( |
|
f"Error in infer: return_log_probs set to True but supplied engine " |
|
f"{engine.__class__.__name__} does not support logprobs." |
|
) |
|
infer_outputs = engine.infer_log_probs(dataset, return_meta_data) |
|
raw_predictions = ( |
|
[output.prediction for output in infer_outputs] |
|
if return_meta_data |
|
else infer_outputs |
|
) |
|
raw_predictions = [ |
|
json.dumps(raw_prediction) for raw_prediction in raw_predictions |
|
] |
|
else: |
|
infer_outputs = engine.infer(dataset, return_meta_data) |
|
raw_predictions = ( |
|
[output.prediction for output in infer_outputs] |
|
if return_meta_data |
|
else infer_outputs |
|
) |
|
predictions = post_process(raw_predictions, dataset) |
|
if return_data: |
|
for prediction, raw_prediction, instance, infer_output in zip( |
|
predictions, raw_predictions, dataset, infer_outputs |
|
): |
|
if return_meta_data: |
|
instance["infer_meta_data"] = infer_output.__dict__ |
|
del instance["infer_meta_data"]["prediction"] |
|
instance["prediction"] = prediction |
|
instance["raw_prediction"] = raw_prediction |
|
return dataset |
|
return predictions |
|
|