metric / schema.py
Elron's picture
Upload folder using huggingface_hub
d08fbc6 verified
raw
history blame
4.45 kB
import json
from typing import Any, Dict, List, Optional
from datasets import Audio, Features, Image, Sequence, Value
from .artifact import Artifact
from .dict_utils import dict_get
from .operator import InstanceOperatorValidator
from .settings_utils import get_constants
constants = get_constants()
UNITXT_DATASET_SCHEMA = Features(
{
"source": Value("string"),
"target": Value("string"),
"references": Sequence(Value("string")),
"metrics": Sequence(Value("string")),
"groups": Sequence(Value("string")),
"subset": Sequence(Value("string")),
"media": {
"images": Sequence(Image()),
"audios": Sequence(Audio()),
},
"postprocessors": Sequence(Value("string")),
"task_data": Value(dtype="string"),
"data_classification_policy": Sequence(Value("string")),
}
)
UNITXT_INFERENCE_SCHEMA = Features(
{
"source": Value("string"),
"metrics": Sequence(Value("string")),
"groups": Sequence(Value("string")),
"subset": Sequence(Value("string")),
"postprocessors": Sequence(Value("string")),
"task_data": Value(dtype="string"),
"data_classification_policy": Sequence(Value("string")),
}
)
def get_schema(stream_name):
if stream_name == constants.inference_stream:
return UNITXT_INFERENCE_SCHEMA
return UNITXT_DATASET_SCHEMA
class Finalize(InstanceOperatorValidator):
group_by: List[List[str]]
remove_unnecessary_fields: bool = True
@staticmethod
def artifact_to_jsonable(artifact):
if artifact.__id__ is None:
return artifact.to_dict()
return artifact.__id__
def _prepare_media(self, instance):
if "media" not in instance:
instance["media"] = {}
if "images" not in instance["media"]:
instance["media"]["images"] = []
if "audios" not in instance["media"]:
instance["media"]["audios"] = []
return instance
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
metadata = {
"data_classification_policy": instance["data_classification_policy"],
"template": self.artifact_to_jsonable(
instance["recipe_metadata"]["template"]
),
"num_demos": instance["recipe_metadata"]["num_demos"],
}
task_data = {
**instance["input_fields"],
"metadata": metadata,
}
if stream_name != constants.inference_stream:
task_data = {**task_data, **instance["reference_fields"]}
instance["task_data"] = json.dumps(task_data)
if self.remove_unnecessary_fields:
keys_to_delete = []
for key in instance.keys():
if key not in get_schema(stream_name):
keys_to_delete.append(key)
for key in keys_to_delete:
del instance[key]
data = {**task_data, **metadata}
groups = []
for group_attributes in self.group_by:
group = {}
if isinstance(group_attributes, str):
group_attributes = [group_attributes]
for attribute in group_attributes:
group[attribute] = dict_get(data, attribute)
groups.append(json.dumps(group))
instance["groups"] = groups
instance["subset"] = []
instance = self._prepare_media(instance)
instance["metrics"] = [
metric.to_json() if isinstance(metric, Artifact) else metric
for metric in instance["metrics"]
]
instance["postprocessors"] = [
processor.to_json() if isinstance(processor, Artifact) else processor
for processor in instance["postprocessors"]
]
return instance
def validate(self, instance: Dict[str, Any], stream_name: Optional[str] = None):
# verify the instance has the required schema
assert instance is not None, "Instance is None"
assert isinstance(
instance, dict
), f"Instance should be a dict, got {type(instance)}"
schema = get_schema(stream_name)
assert all(
key in instance for key in schema
), f"Instance should have the following keys: {schema}. Instance is: {instance}"
schema.encode_example(instance)