metric / api.py
Elron's picture
Upload api.py with huggingface_hub
7aa5a5e verified
raw
history blame
1.39 kB
from functools import lru_cache
from typing import Any, Dict, List, Union
from datasets import DatasetDict
from .artifact import fetch_artifact
from .dataset_utils import get_dataset_artifact
from .logging_utils import get_logger
from .metric_utils import _compute
from .operator import SourceOperator
logger = get_logger()
def load(source: Union[SourceOperator, str]) -> DatasetDict:
assert isinstance(
source, (SourceOperator, str)
), "source must be a SourceOperator or a string"
if isinstance(source, str):
source, _ = fetch_artifact(source)
return source().to_dataset()
def load_dataset(dataset_query: str) -> DatasetDict:
dataset_query = dataset_query.replace("sys_prompt", "instruction")
dataset_stream = get_dataset_artifact(dataset_query)
return dataset_stream().to_dataset()
def evaluate(predictions, data) -> List[Dict[str, Any]]:
return _compute(predictions=predictions, references=data)
@lru_cache
def _get_produce_with_cache(recipe_query):
return get_dataset_artifact(recipe_query).produce
def produce(instance_or_instances, recipe_query):
is_list = isinstance(instance_or_instances, list)
if not is_list:
instance_or_instances = [instance_or_instances]
result = _get_produce_with_cache(recipe_query)(instance_or_instances)
if not is_list:
result = result[0]
return result