metric / operators.py
Elron's picture
Upload operators.py with huggingface_hub
78663de
raw
history blame
50.7 kB
import collections
import importlib
import uuid
from abc import abstractmethod
from collections import Counter
from copy import deepcopy
from dataclasses import field
from itertools import zip_longest
from typing import (
Any,
Callable,
Dict,
Generator,
Iterable,
List,
Optional,
Tuple,
Union,
)
from .artifact import Artifact, fetch_artifact
from .dataclass import NonPositionalField
from .dict_utils import dict_delete, dict_get, dict_set, is_subpath
from .operator import (
MultiStream,
MultiStreamOperator,
PagedStreamOperator,
SingleStreamOperator,
SingleStreamReducer,
StreamingOperator,
StreamInitializerOperator,
StreamInstanceOperator,
StreamSource,
)
from .random_utils import get_random, nested_seed
from .stream import Stream
from .text_utils import nested_tuple_to_string
from .utils import flatten_dict
class FromIterables(StreamInitializerOperator):
"""Creates a MultiStream from iterables.
Args:
iterables (Dict[str, Iterable]): A dictionary where each key-value pair represents a stream name and its corresponding iterable.
"""
def process(self, iterables: Dict[str, Iterable]) -> MultiStream:
return MultiStream.from_iterables(iterables)
class IterableSource(StreamSource):
iterables: Dict[str, Iterable]
def __call__(self) -> MultiStream:
return MultiStream.from_iterables(self.iterables)
class MapInstanceValues(StreamInstanceOperator):
"""A class used to map instance values into a stream.
This class is a type of StreamInstanceOperator,
it maps values of instances in a stream using predefined mappers.
Attributes:
mappers (Dict[str, Dict[str, str]]): The mappers to use for mapping instance values.
Keys are the names of the fields to be mapped, and values are dictionaries
that define the mapping from old values to new values.
strict (bool): If True, the mapping is applied strictly. That means if a value
does not exist in the mapper, it will raise a KeyError. If False, values
that are not present in the mapper are kept as they are.
process_every_value (bool): If True, all fields to be mapped should be lists, and the mapping
is to be applied to their individual elements. If False, mapping is only applied to a field
containing a single value.
Examples:
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}})
replaces '1' with 'hi' and '2' with 'bye' in field 'a' in all instances of all streams:
instance {"a":"1", "b": 2} becomes {"a":"hi", "b": 2}.
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, process_every_element=True)
Assuming field 'a' is a list of values, potentially including "1"-s and "2"-s, this replaces
each such "1" with "hi" and "2" -- with "bye" in all instances of all streams:
instance {"a": ["1", "2"], "b": 2} becomes {"a": ["hi", "bye"], "b": 2}.
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, strict=True)
To ensure that all values of field 'a' are mapped in every instance, use strict=True.
Input instance {"a":"3", "b": 2} will raise an exception per the above call,
because "3" is not a key in the mapper of "a".
"""
mappers: Dict[str, Dict[str, str]]
strict: bool = True
use_query: bool = False
process_every_value: bool = False
def verify(self):
# make sure the mappers are valid
for key, mapper in self.mappers.items():
assert isinstance(
mapper, dict
), f"Mapper for given field {key} should be a dict, got {type(mapper)}"
for k in mapper.keys():
assert isinstance(
k, str
), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}'
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for key, mapper in self.mappers.items():
value = dict_get(instance, key, use_dpath=self.use_query)
if value is not None:
if (self.process_every_value is True) and (not isinstance(value, list)):
raise ValueError(
f"'process_every_field' == True is allowed only when all fields which have mappers, i.e., {list(self.mappers.keys())} are lists. Instace = {instance}"
)
if isinstance(value, list):
if self.process_every_value:
for i, val in enumerate(value):
val = str(val) # make sure the value is a string
if self.strict and (val not in mapper):
raise KeyError(
f"value '{val}' in instance '{instance}' is not found in mapper '{mapper}', associated with field '{key}'."
)
if val in mapper:
# replace just that member of value (value is a list)
value[i] = mapper[val]
dict_set(instance, key, value, use_dpath=self.use_query)
else: # field is a list, and process_every_value == False
if self.strict: # whole lists can not be mapped by a string-to-something mapper
raise KeyError(
f"A whole list ({value}) in the instance can not be mapped by a field mapper."
)
else: # value is not a list, implying process_every_value == False
value = str(value) # make sure the value is a string
if self.strict and (value not in mapper):
raise KeyError(
f"value '{value}' in instance '{instance}' is not found in mapper '{mapper}', associated with field '{key}'."
)
if value in mapper:
dict_set(instance, key, mapper[value], use_dpath=self.use_query)
return instance
class FlattenInstances(StreamInstanceOperator):
"""Flattens each instance in a stream, making nested dictionary entries into top-level entries.
Args:
parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string.
sep (str): The separator to use when concatenating nested keys. Defaults to "_".
"""
parent_key: str = ""
sep: str = "_"
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep)
class AddFields(StreamInstanceOperator):
"""Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.
Args:
fields (Dict[str, object]): The fields to add to each instance.
use_query (bool) : Use '/' to access inner fields
use_deepcopy (bool) : Deep copy the input value to avoid later modifications
Examples:
# Add a 'classes' field with a value of a list "positive" and "negative" to all streams
AddFields(fields={"classes": ["positive","negatives"]})
# Add a 'start' field under the 'span' field with a value of 0 to all streams
AddFields(fields={"span/start": 0}
# Add a 'classes' field with a value of a list "positive" and "negative" to 'train' stream
AddFields(fields={"classes": ["positive","negatives"], apply_to_stream=["train"]})
# Add a 'classes' field on a given list, prevent modification of original list
# from changing the instance.
AddFields(fields={"classes": alist}), use_deepcopy=True)
"""
fields: Dict[str, object]
use_query: bool = False
use_deepcopy: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
if self.use_query:
for key, value in self.fields.items():
if self.use_deepcopy:
value = deepcopy(value)
dict_set(instance, key, value, use_dpath=self.use_query)
else:
if self.use_deepcopy:
self.fields = deepcopy(self.fields)
instance.update(self.fields)
return instance
class RemoveFields(StreamInstanceOperator):
"""Remove specified fields to each instance in a stream.
Args:
fields (List[str]): The fields to remove from each instance.
"""
fields: List[str]
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for field_name in self.fields:
del instance[field_name]
return instance
class FieldOperator(StreamInstanceOperator):
"""A general stream that processes the values of a field (or multiple ones.
Args:
field (Optional[str]): The field to process, if only a single one is passed Defaults to None
to_field (Optional[str]): Field name to save, if only one field is to be saved, if None is passed the operator would happen in-place and replace "field" Defaults to None
field_to_field (Optional[Union[List[Tuple[str, str]], Dict[str, str]]]): Mapping from fields to process to their names after this process, duplicates are allowed. Defaults to None
process_every_value (bool): Processes the values in a list instead of the list as a value, similar to *var. Defaults to False
use_query (bool): Whether to use dpath style queries. Defaults to False.
"""
field: Optional[str] = None
to_field: Optional[str] = None
field_to_field: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] = None
process_every_value: bool = False
use_query: bool = False
get_default: Any = None
not_exist_ok: bool = False
def verify(self):
super().verify()
assert (
self.field is not None or self.field_to_field is not None
), "Must supply a field to work on"
assert (
self.to_field is None or self.field_to_field is None
), f"Can not apply operator to create both on {self.to_field} and on the mapping from fields to fields {self.field_to_field}"
assert (
self.field is None or self.field_to_field is None
), f"Can not apply operator both on {self.field} and on the mapping from fields to fields {self.field_to_field}"
assert (
self._field_to_field
), f"the from and to fields must be defined got: {self._field_to_field}"
@abstractmethod
def process_value(self, value: Any) -> Any:
pass
def prepare(self):
if self.to_field is None:
self.to_field = self.field
if self.field_to_field is None:
self._field_to_field = [(self.field, self.to_field)]
else:
try:
self._field_to_field = list(self.field_to_field.items())
except AttributeError:
self._field_to_field = self.field_to_field
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for from_field, to_field in self._field_to_field:
try:
old_value = dict_get(
instance,
from_field,
use_dpath=self.use_query,
default=self.get_default,
not_exist_ok=self.not_exist_ok,
)
except Exception as e:
raise ValueError(
f"Failed to get '{from_field}' from {instance} due to : {e}"
) from e
try:
if self.process_every_value:
new_value = [self.process_value(value) for value in old_value]
else:
new_value = self.process_value(old_value)
except Exception as e:
raise ValueError(
f"Failed to process '{from_field}' from {instance} due to : {e}"
) from e
if self.use_query and is_subpath(from_field, to_field):
dict_delete(instance, from_field)
dict_set(
instance,
to_field,
new_value,
use_dpath=self.use_query,
not_exist_ok=True,
)
return instance
class RenameFields(FieldOperator):
"""Renames fields."""
def process_value(self, value: Any) -> Any:
return value
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
res = super().process(instance=instance, stream_name=stream_name)
vals = [x[1] for x in self._field_to_field]
for key, _ in self._field_to_field:
if self.use_query and "/" in key:
continue
if key not in vals:
res.pop(key)
return res
class AddConstant(FieldOperator):
"""Adds a value, similar to add + field.
Args:
add: sum to add.
"""
add: Any
def process_value(self, value: Any) -> Any:
return self.add + value
class Augmentor(StreamInstanceOperator):
"""A stream that augments the values of either the task input fields before rendering with the template, or the input passed to the model after rendering of the template.
Args:
augment_model_input: Whether to augment the input to the model.
augment_task_input: Whether to augment the task input fields. The specific fields are defined in the FormTask operator.
"""
augment_task_input: bool = False
augment_model_input: bool = False
def verify(self):
assert not (
self.augment_task_input and self.augment_model_input
), "Augmentor must set either 'augment_task_input' and 'augment_model_input' but not both"
assert (
self.augment_task_input or self.augment_model_input
), "Augmentor must set either 'augment_task_input' or 'augment_model_input'"
super().verify()
@abstractmethod
def process_value(self, value: Any) -> Any:
pass
def prepare(self):
pass
def set_task_input_fields(self, task_input_fields: List[str]):
self._task_input_fields = [
"inputs/" + task_input_field for task_input_field in task_input_fields
]
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
if self.augment_task_input:
assert (
len(self._task_input_fields) > 0
), "No augmentable input fields were defined in FormTask, and augmentation was requested. Specify the fields to augment in 'argumentable_inputs' attribute of the FormTask."
fields = self._task_input_fields
assert not self.augment_model_input
if self.augment_model_input:
fields = ["source"]
assert not self.augment_task_input
for field_name in fields:
try:
old_value = dict_get(
instance,
field_name,
use_dpath=True,
default="",
not_exist_ok=False,
)
except TypeError as e:
raise TypeError(f"Failed to get {field_name} from {instance}") from e
# We are setting a nested seed based on the value processed, to ensure that
# the augmentation randomizations do not effect other randomization choices and
# to make the augmentation randomization choices different for each text.
with nested_seed(str(hash(old_value))):
try:
new_value = self.process_value(old_value)
except Exception as e:
raise RuntimeError(
f"Error augmenting value '{old_value}' from '{field_name}' in instance: {instance}"
) from e
dict_set(instance, field_name, new_value, use_dpath=True, not_exist_ok=True)
return instance
class NullAugmentor(Augmentor):
def verify(self):
pass
def process_value(self, value: Any) -> Any:
return value
class AugmentWhitespace(Augmentor):
"""Augments the inputs by replace existing whitespace with other whitespace.
Currently each whitespace is replaced by a random choice of 1-3 whitespace charaters (spcae, tab, newline).
"""
def process_value(self, value: Any) -> Any:
import re
words = re.split(r"(\s+)", value)
new_value = ""
for word in words:
if word.isspace():
new_value += get_random().choice(
["\n", "\t", " "]
) * get_random().randint(1, 3)
else:
new_value += word
return new_value
class AugmentSuffix(Augmentor):
r"""Augments the input by appending to it a randomly selected (typically, whitespace) pattern.
Args:
suffixes : the potential (typically, whitespace) patterns to select from.
The dictionary version allows to specify relative weights of the different patterns.
remove_existing_trailing_whitespaces : allows to first clean existing trailing whitespaces.
The selected pattern is then appended to the potentially trimmed at its end input.
Examples:
to append a '\n' or a '\t' to the end of the input, employ
AugmentSuffix(augment_model_input=True, suffixes=['\n','\t'])
If '\n' is preferred over '\t', at 2:1 ratio, employ
AugmentSuffix(augment_model_input=True, suffixes={'\n':2,'\t':1})
which will append '\n' twice as often as '\t'.
"""
suffixes: Optional[Union[List[str], Dict[str, int]]] = [" ", "\n", "\t"]
remove_existing_trailing_whitespaces: Optional[bool] = False
def verify(self):
assert (
isinstance(self.suffixes, list) or isinstance(self.suffixes, dict)
), f"Argument 'suffixes' should be either a list or a dictionary, whereas it is of type {type(self.suffixes)}"
if isinstance(self.suffixes, dict):
for k, v in self.suffixes.items():
assert isinstance(
k, str
), f"suffixes should map strings, whereas key {k!s} is of type {type(k)}"
assert isinstance(
v, int
), f"suffixes should map to ints, whereas value {v!s} is of type {type(v)}"
else:
for k in self.suffixes:
assert isinstance(
k, str
), f"suffixes should be a list of strings, whereas member {k!s} is of type {type(k)}"
self.pats = (
self.suffixes
if isinstance(self.suffixes, list)
else [k for k, v in self.suffixes.items()]
)
total_weight = (
len(self.pats)
if isinstance(self.suffixes, list)
else sum([v for k, v in self.suffixes.items()])
)
self.weights = (
[1.0 / total_weight] * len(self.pats)
if isinstance(self.suffixes, list)
else [float(self.suffixes[p]) / total_weight for p in self.pats]
)
super().verify()
def process_value(self, value: Any) -> Any:
assert value is not None, "input value should not be None"
new_value = str(value)
if self.remove_existing_trailing_whitespaces:
new_value = new_value.rstrip()
new_value += get_random().choices(self.pats, self.weights, k=1)[0]
return new_value
class ShuffleFieldValues(FieldOperator):
"""Shuffles an iterable value."""
def process_value(self, value: Any) -> Any:
res = list(value)
get_random().shuffle(res)
return res
class JoinStr(FieldOperator):
"""Joins a list of strings (contents of a field), similar to str.join().
Args:
separator (str): text to put between values
"""
separator: str = ","
def process_value(self, value: Any) -> Any:
return self.separator.join(str(x) for x in value)
class Apply(StreamInstanceOperator):
"""A class used to apply a python function and store the result in a field.
Args:
function (str): name of function.
to_field (str): the field to store the result
additional arguments are field names passed to the function
Examples:
Store in field "b" the uppercase string of the value in field "a"
Apply("a", function=str.upper, to_field="b")
Dump the json representation of field "t" and store back in the same field.
Apply("t", function=json.dumps, to_field="t")
Set the time in a field 'b'.
Apply(function=time.time, to_field="b")
"""
__allow_unexpected_arguments__ = True
function: Callable = NonPositionalField(required=True)
to_field: str = NonPositionalField(required=True)
def function_to_str(self, function: Callable) -> str:
parts = []
if hasattr(function, "__module__"):
parts.append(function.__module__)
if hasattr(function, "__qualname__"):
parts.append(function.__qualname__)
else:
parts.append(function.__name__)
return ".".join(parts)
def str_to_function(self, function_str: str) -> Callable:
splitted = function_str.split(".", 1)
if len(splitted) == 1:
return __builtins__[splitted[0]]
module_name, function_name = splitted
if module_name in __builtins__:
obj = __builtins__[module_name]
elif module_name in globals():
obj = globals()[module_name]
else:
obj = importlib.import_module(module_name)
for part in function_name.split("."):
obj = getattr(obj, part)
return obj
def prepare(self):
super().prepare()
if isinstance(self.function, str):
self.function = self.str_to_function(self.function)
self._init_dict["function"] = self.function_to_str(self.function)
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
argv = [instance[arg] for arg in self._argv]
kwargs = {key: instance[val] for key, val in self._kwargs}
result = self.function(*argv, **kwargs)
instance[self.to_field] = result
return instance
class ListFieldValues(StreamInstanceOperator):
"""Concatenates values of multiple fields into a list, and assigns it to a new field."""
fields: List[str]
to_field: str
use_query: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
values = []
for field_name in self.fields:
values.append(dict_get(instance, field_name, use_dpath=self.use_query))
instance[self.to_field] = values
return instance
class ZipFieldValues(StreamInstanceOperator):
"""Zips values of multiple fields similar to list(zip(*fields))."""
fields: str
to_field: str
longest: bool = False
use_query: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
values = []
for field_name in self.fields:
values.append(dict_get(instance, field_name, use_dpath=self.use_query))
if self.longest:
zipped = zip_longest(*values)
else:
zipped = zip(*values)
instance[self.to_field] = list(zipped)
return instance
class IndexOf(StreamInstanceOperator):
"""Finds the location of one value in another (iterable) value similar to to_field=search_in.index(index_of)."""
search_in: str
index_of: str
to_field: str
use_query: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
lst = dict_get(instance, self.search_in, use_dpath=self.use_query)
item = dict_get(instance, self.index_of, use_dpath=self.use_query)
instance[self.to_field] = lst.index(item)
return instance
class TakeByField(StreamInstanceOperator):
"""Takes value from one field based on another field similar to field[index]."""
field: str
index: str
to_field: str = None
use_query: bool = False
def prepare(self):
if self.to_field is None:
self.to_field = self.field
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
value = dict_get(instance, self.field, use_dpath=self.use_query)
index_value = dict_get(instance, self.index, use_dpath=self.use_query)
instance[self.to_field] = value[index_value]
return instance
class CopyFields(FieldOperator):
"""Copies specified fields from one field to another.
Args:
field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields.
use_dpath (bool): Whether to use dpath for accessing fields. Defaults to False.
"""
def process_value(self, value: Any) -> Any:
return value
class AddID(StreamInstanceOperator):
id_field_name: str = "id"
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance[self.id_field_name] = str(uuid.uuid4()).replace("-", "")
return instance
class CastFields(StreamInstanceOperator):
"""Casts specified fields to specified types.
Args:
types (Dict[str, str]): A dictionary mapping fields to their new types.
nested (bool): Whether to cast nested fields. Defaults to False.
fields (Dict[str, str]): A dictionary mapping fields to their new types.
defaults (Dict[str, object]): A dictionary mapping types to their default values for cases of casting failure.
"""
types = {
"int": int,
"float": float,
"str": str,
"bool": bool,
}
fields: Dict[str, str] = field(default_factory=dict)
failure_defaults: Dict[str, object] = field(default_factory=dict)
use_nested_query: bool = False
cast_multiple: bool = False
def _cast_single(self, value, type, field):
try:
return self.types[type](value)
except Exception as e:
if field not in self.failure_defaults:
raise ValueError(
f'Failed to cast field "{field}" with value {value} to type "{type}", and no default value is provided.'
) from e
return self.failure_defaults[field]
def _cast_multiple(self, values, type, field):
values = [self._cast_single(value, type, field) for value in values]
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for field_name, type in self.fields.items():
value = dict_get(instance, field_name, use_dpath=self.use_nested_query)
if self.cast_multiple:
casted_value = self._cast_multiple(value, type, field_name)
else:
casted_value = self._cast_single(value, type, field_name)
dict_set(
instance, field_name, casted_value, use_dpath=self.use_nested_query
)
return instance
def recursive_divide(instance, divisor, strict=False):
if isinstance(instance, dict):
for key, value in instance.items():
instance[key] = recursive_divide(value, divisor, strict=strict)
elif isinstance(instance, list):
for i, value in enumerate(instance):
instance[i] = recursive_divide(value, divisor, strict=strict)
elif isinstance(instance, float):
instance /= divisor
elif strict:
raise ValueError(f"Cannot divide instance of type {type(instance)}")
return instance
class DivideAllFieldsBy(StreamInstanceOperator):
divisor: float = 1.0
strict: bool = False
recursive: bool = True
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
return recursive_divide(instance, self.divisor, strict=self.strict)
class ArtifactFetcherMixin:
"""Provides a way to fetch and cache artifacts in the system.
Args:
cache (Dict[str, Artifact]): A cache for storing fetched artifacts.
"""
cache: Dict[str, Artifact] = {}
@classmethod
def get_artifact(cls, artifact_identifier: str) -> Artifact:
if artifact_identifier not in cls.cache:
artifact, artifactory = fetch_artifact(artifact_identifier)
cls.cache[artifact_identifier] = artifact
return cls.cache[artifact_identifier]
class ApplyOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin):
"""Applies value operators to each instance in a stream based on specified fields.
Args:
value_field (str): The field containing the value to be operated on.
operators_field (str): The field containing the operators to be applied.
default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.
"""
inputs_fields: str
operators_field: str
default_operators: List[str] = None
fields_to_treat_as_list: List[str] = NonPositionalField(default_factory=list)
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
operator_names = instance.get(self.operators_field)
if operator_names is None:
assert (
self.default_operators is not None
), f"No operators found in {self.field} field and no default operators provided"
operator_names = self.default_operators
if isinstance(operator_names, str):
operator_names = [operator_names]
for name in operator_names:
operator = self.get_artifact(name)
for field_name in self.inputs_fields:
value = instance[field_name]
if field_name in self.fields_to_treat_as_list:
instance[field_name] = [operator.process(v) for v in value]
else:
instance[field_name] = operator.process(instance[field_name])
return instance
class FilterByValues(SingleStreamOperator):
"""Filters a stream, yielding only instances that match specified values in the provided fields.
Args:
values (Dict[str, Any]): For each field, the values that instances should match to be included in the output.
"""
required_values: Dict[str, Any]
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
for instance in stream:
filter = False
for key, value in self.required_values.items():
if key not in instance:
raise ValueError(
f"Required filter field ('{key}') in FilterByValues is not found in {instance}"
)
if instance[key] != value:
filter = True
if not filter:
yield instance
class ExtractFieldValues(MultiStreamOperator):
field: str
stream_name: str
overall_top_frequency_percent: Optional[int] = 100
min_frequency_percent: Optional[int] = 0
to_field: str
process_every_value: Optional[bool] = False
"""
Extract the unique values of a field ('field') of a given stream ('stream_name') and store (the most frequent of) them
as a list in a new field ('to_field') in all streams.
More specifically, sort all the unique values encountered in field 'field' by decreasing order of frequency.
When 'overall_top_frequency_percent' is smaller than 100, trim the list from bottom, so that the total frequency of
the remaining values makes 'overall_top_frequency_percent' of the total number of instances in the stream.
When 'min_frequency_percent' is larger than 0, remove from the list any value whose relative frequency makes
less than 'min_frequency_percent' of the total number of instances in the stream.
At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default values.
Examples:
ExtractFieldValues(stream_name="train", field="label", to_field="classes") - extracts all the unique values of
field 'label', sorts them by decreasing frequency, and stores the resulting list in field 'classes' of each and
every instance in all streams.
ExtractFieldValues(stream_name="train", field="labels", to_field="classes", process_every_value=True) -
in case that field 'labels' contains a list of values (and not a single value) - track the occurrences of all the possible
value members in these lists, and report the most frequent values.
if process_every_value=False, track the most frequent whole lists, and report those (as a list of lists) in field
'to_field' of each instance of all streams.
ExtractFieldValues(stream_name="train", field="label", to_field="classes",overall_top_frequency_percent=80) -
extracts the most frequent possible values of field 'label' that together cover at least 80% of the instances of stream_name,
and stores them in field 'classes' of each instance of all streams.
ExtractFieldValues(stream_name="train", field="label", to_field="classes",min_frequency_percent=5) -
extracts all possible values of field 'label' that cover, each, at least 5% of the instances.
Stores these values, sorted by decreasing order of frequency, in field 'classes' of each instance in all streams.
"""
def verify(self):
assert (
self.overall_top_frequency_percent <= 100
and self.overall_top_frequency_percent >= 0
), "'overall_top_frequency_percent' must be between 0 and 100"
assert (
self.min_frequency_percent <= 100 and self.min_frequency_percent >= 0
), "'min_frequency_percent' must be between 0 and 100"
assert not (
self.overall_top_frequency_percent < 100 and self.min_frequency_percent > 0
), "At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default value"
super().verify()
def process(self, multi_stream: MultiStream) -> MultiStream:
stream = multi_stream[self.stream_name]
all_values = []
for instance in stream:
if (not isinstance(instance[self.field], list)) and (
self.process_every_value is True
):
raise ValueError(
"'process_every_field' is allowed to change to 'True' only for fields whose contents are lists"
)
if (not isinstance(instance[self.field], list)) or (
self.process_every_value is False
):
# either not a list, or is a list but process_every_value == False : view contetns of 'field' as one entity whose occurrences are counted.
all_values.append(
(*instance[self.field],)
if isinstance(instance[self.field], list)
else instance[self.field]
) # convert to a tuple if list, to enable the use of Counter which would not accept
# a list as an entity to count its occurrences
else:
# content of 'field' is a list and process_every_value == True: add one occurrence on behalf of each individual value
all_values.extend(instance[self.field])
counter = Counter(
all_values
) # here all_values is a list of individual values, or tupples. Hence, Counter is feasible
values_and_counts = counter.most_common()
if self.overall_top_frequency_percent < 100:
top_frequency = len(all_values) * self.overall_top_frequency_percent / 100.0
sum_counts = 0
for _i, p in enumerate(values_and_counts):
sum_counts += p[1]
if sum_counts >= top_frequency:
break
values_and_counts = counter.most_common(_i + 1)
if self.min_frequency_percent > 0:
min_frequency = self.min_frequency_percent * len(all_values) / 100.0
while values_and_counts[-1][1] < min_frequency:
values_and_counts.pop()
values_to_keep = [
[*ele[0]] if isinstance(ele[0], tuple) else ele[0]
for ele in values_and_counts
]
for name in multi_stream:
for instance in multi_stream[name]:
instance[self.to_field] = values_to_keep
return multi_stream
class FilterByListsOfValues(SingleStreamOperator):
"""Filters a stream, yielding only instances that whose field values are included in the specified value lists.
Args:
required_values (Dict[str, List]): For each field, the list of values that instances should match to be included in the output.
"""
required_values: Dict[str, List]
def verify(self):
super().verify()
for key, value in self.required_values.items():
if not isinstance(value, list):
raise ValueError(
f"The filter for key ('{key}') in FilterByListsOfValues is not a list but '{value}'"
)
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
for instance in stream:
filter = False
for key, value in self.required_values.items():
if key not in instance:
raise ValueError(
f"Required filter field ('{key}') in FilterByListsOfValues is not found in {instance}"
)
if instance[key] not in value:
filter = True
if not filter:
yield instance
class Intersect(FieldOperator):
"""Intersects the value of a field, which must be a list, with a given list.
Args:
allowed_values (list) - list to intersect.
"""
allowed_values: List[Any]
def verify(self):
super().verify()
if self.process_every_value:
raise ValueError(
"'process_every_value=True' is not supported in Intersect operator"
)
if not isinstance(self.allowed_values, list):
raise ValueError(
f"The allowed_values is not a list but '{self.allowed_values}'"
)
def process_value(self, value: Any) -> Any:
if not isinstance(value, list):
raise ValueError(f"The value in field is not a list but '{value}'")
return [e for e in value if e in self.allowed_values]
class RemoveValues(FieldOperator):
"""Removes elements in a field, which must be a list, using a given list of unallowed.
Args:
unallowed_values (list) - removed_values.
"""
unallowed_values: List[Any]
def verify(self):
super().verify()
if self.process_every_value:
raise ValueError(
"'process_every_value=True' is not supported in RemoveValues operator"
)
if not isinstance(self.unallowed_values, list):
raise ValueError(
f"The unallowed_values is not a list but '{self.unallowed_values}'"
)
def process_value(self, value: Any) -> Any:
if not isinstance(value, list):
raise ValueError(f"The value in field is not a list but '{value}'")
return [e for e in value if e not in self.unallowed_values]
class Unique(SingleStreamReducer):
"""Reduces a stream to unique instances based on specified fields.
Args:
fields (List[str]): The fields that should be unique in each instance.
"""
fields: List[str] = field(default_factory=list)
@staticmethod
def to_tuple(instance: dict, fields: List[str]) -> tuple:
result = []
for field_name in fields:
value = instance[field_name]
if isinstance(value, list):
value = tuple(value)
result.append(value)
return tuple(result)
def process(self, stream: Stream) -> Stream:
seen = set()
for instance in stream:
values = self.to_tuple(instance, self.fields)
if values not in seen:
seen.add(values)
return list(seen)
class SplitByValue(MultiStreamOperator):
"""Splits a MultiStream into multiple streams based on unique values in specified fields.
Args:
fields (List[str]): The fields to use when splitting the MultiStream.
"""
fields: List[str] = field(default_factory=list)
def process(self, multi_stream: MultiStream) -> MultiStream:
uniques = Unique(fields=self.fields)(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
stream_unique_values = uniques[stream_name]
for unique_values in stream_unique_values:
filtering_values = dict(zip(self.fields, unique_values))
filtered_streams = FilterByValues(
required_values=filtering_values
)._process_single_stream(stream)
filtered_stream_name = (
stream_name + "_" + nested_tuple_to_string(unique_values)
)
result[filtered_stream_name] = filtered_streams
return MultiStream(result)
class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin):
"""Applies stream operators to a stream based on specified fields in each instance.
Args:
field (str): The field containing the operators to be applied.
reversed (bool): Whether to apply the operators in reverse order.
"""
field: str
reversed: bool = False
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
first_instance = stream.peak()
operators = first_instance.get(self.field, [])
if isinstance(operators, str):
operators = [operators]
if self.reversed:
operators = list(reversed(operators))
for operator_name in operators:
operator = self.get_artifact(operator_name)
assert isinstance(
operator, StreamingOperator
), f"Operator {operator_name} must be a SingleStreamOperator"
stream = operator(MultiStream({"tmp": stream}))["tmp"]
yield from stream
class ApplyMetric(SingleStreamOperator, ArtifactFetcherMixin):
"""Applies metric operators to a stream based on a metric field specified in each instance.
Args:
metric_field (str): The field containing the metrics to be applied.
calc_confidence_intervals (bool): Whether the applied metric should calculate confidence intervals or not.
"""
metric_field: str
calc_confidence_intervals: bool
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
from .metrics import Metric, MetricPipeline, MetricWithConfidenceInterval
first_instance = stream.peak()
metric_names = first_instance.get(self.metric_field, [])
if not metric_names:
raise RuntimeError(
f"Missing metric names in field '{self.metric_field}' and instance '{first_instance}'."
)
if isinstance(metric_names, str):
metric_names = [metric_names]
# Each metric operator computes its score and then sets the main score, overwriting
# the previous main score value (if any). So, we need to reverse the order of the listed metrics.
# This will cause the first listed metric to run last, and the main score will be set
# by the first listed metric (as desired).
metric_names = list(reversed(metric_names))
for metric_name in metric_names:
metric = self.get_artifact(metric_name)
assert isinstance(
metric, Metric
), f"Operator {metric_name} must be a Metric"
if not self.calc_confidence_intervals:
if isinstance(metric, MetricWithConfidenceInterval):
metric.disable_confidence_interval_calculation()
elif isinstance(metric, MetricPipeline) and isinstance(
metric.metric, MetricWithConfidenceInterval
):
metric.metric.disable_confidence_interval_calculation()
stream = metric(MultiStream({"tmp": stream}))["tmp"]
yield from stream
class AddFieldNamePrefix(StreamInstanceOperator):
"""Adds a prefix to each field name in each instance of a stream.
Args:
prefix_dict (Dict[str, str]): A dictionary mapping stream names to prefixes.
"""
prefix_dict: Dict[str, str]
def prepare(self):
return super().prepare()
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
return {
self.prefix_dict[stream_name] + key: value
for key, value in instance.items()
}
class MergeStreams(MultiStreamOperator):
"""Merges multiple streams into a single stream.
Args:
new_stream_name (str): The name of the new stream resulting from the merge.
add_origin_stream_name (bool): Whether to add the origin stream name to each instance.
origin_stream_name_field_name (str): The field name for the origin stream name.
"""
streams_to_merge: List[str] = None
new_stream_name: str = "all"
add_origin_stream_name: bool = True
origin_stream_name_field_name: str = "origin"
def merge(self, multi_stream):
for stream_name, stream in multi_stream.items():
if self.streams_to_merge is None or stream_name in self.streams_to_merge:
for instance in stream:
if self.add_origin_stream_name:
instance[self.origin_stream_name_field_name] = stream_name
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
return MultiStream(
{
self.new_stream_name: Stream(
self.merge, gen_kwargs={"multi_stream": multi_stream}
)
}
)
class Shuffle(PagedStreamOperator):
"""Shuffles the order of instances in each page of a stream.
Args:
page_size (int): The size of each page in the stream. Defaults to 1000.
"""
def process(self, page: List[Dict], stream_name: Optional[str] = None) -> Generator:
get_random().shuffle(page)
yield from page
class EncodeLabels(StreamInstanceOperator):
"""Encode labels of specified fields together a into integers.
Args:
fields (List[str]): The fields to encode together.
"""
fields: List[str]
def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream:
self.encoder = {}
return super()._process_multi_stream(multi_stream)
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for field_name in self.fields:
values = dict_get(instance, field_name, use_dpath=True)
if not isinstance(values, list):
values = [values]
for value in values:
if value not in self.encoder:
self.encoder[value] = len(self.encoder)
new_values = [self.encoder[value] for value in values]
dict_set(
instance, field_name, new_values, use_dpath=True, set_multiple=True
)
return instance
class StreamRefiner(SingleStreamOperator):
max_instances: int = None
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
if self.max_instances is not None:
yield from stream.take(self.max_instances)
else:
yield from stream
class DeterministicBalancer(StreamRefiner):
"""A class used to balance streams deterministically.
Attributes:
fields (List[str]): A list of field names to be used in determining the signature of an instance.
streams (List[str]): A list of stream names to be processed by the balancer.
Usage:
balancer = DeterministicBalancer(fields=["field1", "field2"], streams=["stream1", "stream2"])
balanced_stream = balancer.process(stream)
"""
fields: List[str]
def signature(self, instance):
return str(
tuple(dict_get(instance, field, use_dpath=True) for field in self.fields)
)
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
counter = collections.Counter()
for instance in stream:
counter[self.signature(instance)] += 1
if len(counter) == 0:
return
lowest_count = counter.most_common()[-1][-1]
max_total_instances_per_sign = lowest_count
if self.max_instances is not None:
max_total_instances_per_sign = min(
lowest_count, self.max_instances // len(counter)
)
counter = collections.Counter()
for instance in stream:
sign = self.signature(instance)
if counter[sign] < max_total_instances_per_sign:
counter[sign] += 1
yield instance
class LengthBalancer(DeterministicBalancer):
segments_boundaries: List[int]
def signature(self, instance):
total_len = 0
for field_name in self.fields:
total_len += len(dict_get(instance, field_name, use_dpath=True))
for i, val in enumerate(self.segments_boundaries):
if total_len < val:
return i
return i + 1