metric / templates.py
Elron's picture
Upload templates.py with huggingface_hub
d321246
raw
history blame
6.35 kB
import random
from abc import ABC, abstractmethod
from typing import Any, Dict, List
from .artifact import Artifact
from .instructions import Instruction
from .operator import InstanceOperatorWithGlobalAccess, StreamInstanceOperator
from .text_utils import split_words
class Renderer(ABC):
@abstractmethod
def get_postprocessors(self) -> List[str]:
pass
class Template(Artifact):
@abstractmethod
def process_inputs(self, inputs: Dict[str, object]) -> Dict[str, object]:
pass
@abstractmethod
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
pass
@abstractmethod
def get_postprocessors(self) -> List[str]:
pass
class RenderFormatTemplate(Renderer, StreamInstanceOperator):
template: Template = None
random_reference: bool = False
def verify(self):
assert isinstance(self.template, Template), "Template must be an instance of Template"
assert self.template is not None, "Template must be specified"
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return self.render(instance)
def render(self, instance: Dict[str, Any]) -> Dict[str, Any]:
inputs = instance.pop("inputs")
outputs = instance.pop("outputs")
source = self.template.process_inputs(inputs)
key, targets = next(iter(outputs.items()))
if not isinstance(targets, list):
targets = [targets]
references = [self.template.process_outputs({key: target}) for target in targets]
if self.random_reference:
target = random.choice(references)
else:
if len(references) == 0:
raise ValueError("No references found")
target = references[0] # what
return {
**instance,
"source": source,
"target": target,
"references": references,
}
def get_postprocessors(self) -> List[str]:
return self.template.get_postprocessors()
class RenderAutoFormatTemplate(RenderFormatTemplate):
def prepare(self):
if self.template is None:
self.template = AutoInputOutputTemplate()
elif isinstance(self.template, InputOutputTemplate):
self.template = AutoInputOutputTemplate(
input_format=self.template.input_format,
output_format=self.template.output_format,
)
else:
raise ValueError(
f"Template must be an instance of InputOutputTemplate or AutoInputOutputTemplate, got {type(self.template)}"
)
def render(self, instance: Dict[str, object]) -> Dict[str, object]:
if not self.template.is_complete():
self.template.infer_missing(instance["inputs"], instance["outputs"])
inputs = {key: value for key, value in instance["inputs"].items()}
return super().render({**instance, "inputs": inputs})
class CharacterSizeLimiter(Artifact):
limit: int = 1000
def check(self, text: str) -> bool:
return len(text) <= self.limit
class RenderTemplatedICL(RenderAutoFormatTemplate):
instruction: Instruction = None
input_prefix: str = "Input: "
output_prefix: str = "Output: "
instruction_prefix: str = ""
demos_field: str = None
size_limiter: Artifact = None
input_output_separator: str = "\n"
demo_separator: str = "\n\n"
demos_cache = None
def verify(self):
assert self.demos_cache is None
def render(self, instance: Dict[str, object]) -> Dict[str, object]:
if self.demos_cache is None:
self.demos_cache = instance.pop(self.demos_field, [])
else:
instance.pop(self.demos_field, None)
source = ""
example = super().render(instance)
input_str = self.input_prefix + example["source"] + self.input_output_separator + self.output_prefix
if self.instruction is not None:
source += self.instruction_prefix + self.instruction() + self.demo_separator
for demo_instance in self.demos_cache:
demo_example = super().render(demo_instance)
demo_str = (
self.input_prefix
+ demo_example["source"]
+ self.input_output_separator
+ self.output_prefix
+ demo_example["target"]
+ self.demo_separator
)
if self.size_limiter is not None:
if not self.size_limiter.check(source + demo_str + input_str + example["target"]):
continue
source += demo_str
source += input_str
return {
**example,
"source": source,
}
class InputOutputTemplate(Template):
input_format: str = None
output_format: str = None
def process_inputs(self, inputs: Dict[str, object]) -> Dict[str, object]:
return self.input_format.format(**inputs)
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
return self.output_format.format(**outputs)
def get_postprocessors(self) -> List[str]:
return ["to_string"]
class AutoInputOutputTemplate(InputOutputTemplate):
def infer_input_format(self, inputs):
input_format = ""
for key in inputs.keys():
name = " ".join(word.lower().capitalize() for word in split_words(key) if word != " ")
input_format += name + ": " + "{" + key + "}" + "\n"
self.input_format = input_format
def infer_output_format(self, outputs):
self.output_format = "{" + next(iter(outputs.keys())) + "}"
def infer_missing(self, inputs, outputs):
if self.input_format is None:
self.infer_input_format(inputs)
if self.output_format is None:
self.infer_output_format(outputs)
def is_complete(self):
return self.input_format is not None and self.output_format is not None
from .collections import ListCollection
class TemplatesList(ListCollection):
def verify(self):
for template in self.items:
assert isinstance(template, Template)
class TemplatesDict(Dict):
def verify(self):
for key, template in self.items():
assert isinstance(template, Template)