|
import re |
|
from abc import abstractmethod |
|
from typing import ( |
|
Any, |
|
Dict, |
|
List, |
|
Literal, |
|
Optional, |
|
Tuple, |
|
TypedDict, |
|
Union, |
|
) |
|
|
|
from .dataclass import OptionalField |
|
from .dict_utils import dict_get |
|
from .image_operators import image_to_data_url |
|
from .operator import InstanceOperator |
|
from .settings_utils import get_constants |
|
from .type_utils import isoftype |
|
|
|
constants = get_constants() |
|
|
|
|
|
class Format(InstanceOperator): |
|
pass |
|
|
|
|
|
def apply_capital_new_line_notation(text: str) -> str: |
|
r"""Transforms a given string by applying the Capital New Line Notation. |
|
|
|
The Capital New Line Notation (\N) is designed to manage newline behavior in a string efficiently. |
|
This custom notation aims to consolidate multiple newline characters (\n) into a single newline under |
|
specific conditions, with tailored handling based on whether there's preceding text. The function |
|
distinguishes between two primary scenarios: |
|
|
|
1. If there's text (referred to as a prefix) followed by any number of \n characters and then one or |
|
more \N, the entire sequence is replaced with a single \n. This effectively simplifies multiple |
|
newlines and notation characters into a single newline when there's preceding text. |
|
2. If the string starts with \n characters followed by \N without any text before this sequence, or if |
|
\N is at the very beginning of the string, the sequence is completely removed. This case is |
|
applicable when the notation should not introduce any newlines due to the absence of preceding text. |
|
|
|
Args: |
|
text (str): The input string to be transformed, potentially containing the Capital New Line Notation |
|
(\N) mixed with actual newline characters (\n). |
|
|
|
Returns: |
|
str: The string after applying the Capital New Line Notation rules, which either consolidates multiple |
|
newlines and notation characters into a single newline when text precedes them, or removes the |
|
notation and any preceding newlines entirely if no text is present before the notation. |
|
|
|
Examples: |
|
>>> apply_capital_new_line_notation("Hello World\\n\\n\N") |
|
'Hello World\\n' |
|
|
|
>>> apply_capital_new_line_notation("\\n\\n\NGoodbye World") |
|
'Goodbye World' |
|
|
|
>>> apply_capital_new_line_notation("\N") |
|
'' |
|
""" |
|
|
|
text = re.sub(r"^(?:\n|\\N)*\\N", "", text) |
|
|
|
return re.sub(r"[\n(\\N)]*(\\N)+", r"\n", text) |
|
|
|
|
|
class BaseFormat(Format): |
|
demos_field: str = "demos" |
|
|
|
@staticmethod |
|
def _pop_field(instance, field_name, do_pop: bool = True) -> str: |
|
if field_name is not None and field_name in instance: |
|
field_value = instance[field_name] |
|
if do_pop: |
|
instance.pop(field_name) |
|
assert ( |
|
field_value is not None |
|
), f"Value in field '{field_name}' should not be none. Received instance: {instance}" |
|
return field_value |
|
return "" |
|
|
|
def _prepare_instance_fields(self, instance) -> Tuple[str]: |
|
instance_fields = {} |
|
|
|
for field in "source", "instruction", "system_prompt", "target_prefix": |
|
instance_fields[field] = self._pop_field(instance, field) |
|
|
|
instance_fields["media"] = self._pop_field(instance, "media", do_pop=False) |
|
if not instance_fields["media"]: |
|
instance_fields["media"] = {"images": [], "audios": []} |
|
|
|
instance_fields["demos"] = [] |
|
if self.demos_field is not None and self.demos_field in instance: |
|
demos = instance[self.demos_field] |
|
assert ( |
|
demos is not None and isoftype(demos, List[Dict[str, Any]]) |
|
), f"A list of dict-s is expected in field '{self.demos_field}'. Received instance: {instance}" |
|
for demo_instance in demos: |
|
demo = {} |
|
for field in ["source", "target", "target_prefix"]: |
|
demo[field] = self._pop_field(demo_instance, field, do_pop=False) |
|
instance_fields["demos"].append(demo) |
|
|
|
return instance_fields |
|
|
|
@abstractmethod |
|
def _format_instance_to_source( |
|
self, |
|
system_prompt: str, |
|
instruction: str, |
|
source: str, |
|
target_prefix: str, |
|
demos: List[Dict[str, Any]], |
|
media: Optional[Dict[str, Any]] = None, |
|
) -> str: |
|
"""Abstract method for formatting instances in different subclasses. |
|
|
|
Subclasses should implement this method to define specific formatting behavior. |
|
""" |
|
return "" |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
instance_fields = self._prepare_instance_fields(instance) |
|
instance["source"] = self._format_instance_to_source(**instance_fields) |
|
return instance |
|
|
|
|
|
class SystemFormat(BaseFormat): |
|
r"""Generates the whole input to the model, from constant strings that are given as args, and from values found in specified fields of the instance. |
|
|
|
Important: formats can use '\N' notations that means new-line if no new-line before and no empty string before. |
|
|
|
SystemFormat expects the input instance to contain: |
|
1. A field named "system_prompt" whose value is a string (potentially empty) that delivers a task-independent opening text. |
|
2. A field named "source" whose value is a string verbalizing the original values in the instance (as read |
|
from the source dataset), in the context of the underlying task. |
|
3. A field named "instruction" that contains a (non-None) string. |
|
4. A field named with the value in arg 'demos_field', containing a list of dicts, each dict with fields "source" |
|
and "target", representing a single demo. |
|
5. A field named "target_prefix" that contains a string to prefix the target in each demo, and to end the whole generated prompt |
|
|
|
SystemFormat formats the above fields into a single string to be inputted to the model. This string overwrites |
|
field "source" of the instance. Formatting is driven by two args: 'demo_format' and 'model_input_format'. |
|
SystemFormat also pops fields "system_prompt", "instruction", "target_prefix", and the field containing the demos out from the input instance. |
|
|
|
Args: |
|
demos_field (str): the name of the field that contains the demos, being a list of dicts, each with "source" and "target" keys |
|
demo_format (str): formatting string for a single demo, combining fields "source" and "target" |
|
model_input_format (str) overall product format, combining instruction and source (as read from fields "instruction" |
|
and "source" of the input instance), together with demos (as formatted into one string) |
|
format_args: Dict[str,str]: additional format args to be used when formatting the different format strings |
|
|
|
Example: |
|
when input instance: |
|
|
|
.. code-block:: |
|
|
|
{ |
|
"source": "1+1", |
|
"target": "2", |
|
"instruction": "Solve the math exercises.", |
|
"demos": [{"source": "1+2", "target": "3"}, {"source": "4-2", "target": "2"}] |
|
} |
|
|
|
is processed by |
|
|
|
.. code-block:: |
|
|
|
system_format = SystemFormat( |
|
demos_field="demos", |
|
demo_format="Input: {source}\nOutput: {target}\n\n", |
|
model_input_format="Instruction: {instruction}\n\n{demos}Input: {source}\nOutput: ", |
|
) |
|
|
|
the resulting instance is: |
|
|
|
.. code-block:: |
|
|
|
{ |
|
"target": "2", |
|
"source": "Instruction: Solve the math exercises.\n\nInput: 1+2\nOutput: 3\n\nInput: 4-2\nOutput: 2\n\nInput: 1+1\nOutput: ", |
|
} |
|
|
|
""" |
|
|
|
demo_format: str = "{source}\\N{target_prefix}{target}\n\n" |
|
model_input_format: str = ( |
|
"{system_prompt}\\N{instruction}\\N{demos}{source}\\N{target_prefix}" |
|
) |
|
format_args: Dict[str, str] = OptionalField(default_factory=dict) |
|
|
|
def _format_instance_to_source( |
|
self, |
|
system_prompt: str, |
|
instruction: str, |
|
source: str, |
|
target_prefix: str, |
|
demos: List[Dict[str, Any]], |
|
media: Optional[Dict[str, Any]] = None, |
|
) -> str: |
|
demos_string = "" |
|
for demo in demos: |
|
demo_str = self.demo_format.format( |
|
**demo, |
|
instruction=instruction, |
|
**self.format_args, |
|
) |
|
demos_string += demo_str |
|
|
|
output = self.model_input_format.format( |
|
system_prompt=system_prompt, |
|
instruction=instruction, |
|
demos=demos_string, |
|
source=source, |
|
target_prefix=target_prefix, |
|
**self.format_args, |
|
) |
|
|
|
return apply_capital_new_line_notation(output) |
|
|
|
|
|
class TextContent(TypedDict): |
|
type: Literal["text"] |
|
text: str |
|
|
|
|
|
class ImageUrlContent(TypedDict): |
|
type: Literal["image_url"] |
|
image_url: Dict[Literal["url"], str] |
|
|
|
|
|
class ImageFileContent(TypedDict): |
|
type: Literal["image_file"] |
|
image_file: Dict[Literal["file_id"], str] |
|
|
|
|
|
Content = Union[TextContent, ImageUrlContent, ImageFileContent] |
|
|
|
|
|
class Message(TypedDict): |
|
role: Literal["system", "user", "assistant"] |
|
content: Union[str, List[Content]] |
|
|
|
|
|
class ChatAPIFormat(BaseFormat): |
|
r"""Formats output for LLM APIs using OpenAI's chat schema. |
|
|
|
Many API services use OpenAI's chat format as a standard for conversational models. |
|
`OpenAIFormat` prepares the output in this API-compatible format, converting input |
|
instances into OpenAI's structured chat format, which supports both text and |
|
multimedia elements, like images. |
|
|
|
The formatted output can be easily converted to a dictionary using `json.loads()` |
|
to make it ready for direct use with OpenAI's API. |
|
|
|
Example: |
|
Given an input instance: |
|
|
|
.. code-block:: python |
|
|
|
{ |
|
"source": "<img src='https://example.com/image1.jpg'>What's in this image?", |
|
"target": "A dog", |
|
"instruction": "Help the user.", |
|
}, |
|
|
|
When processed by: |
|
|
|
.. code-block:: python |
|
|
|
system_format = OpenAIFormat() |
|
|
|
The resulting formatted output is: |
|
|
|
.. code-block:: python |
|
|
|
{ |
|
"target": "A dog", |
|
"source": '[{"role": "system", "content": "Help the user."}, ' |
|
'{"role": "user", "content": [{"type": "image_url", ' |
|
'"image_url": {"url": "https://example.com/image1.jpg", "detail": "low"}}, ' |
|
'{"type": "text", "text": "What\'s in this image?"}]}]' |
|
} |
|
|
|
This `source` field is a JSON-formatted string. To make it ready for OpenAI's API, |
|
you can convert it to a dictionary using `json.loads()`: |
|
|
|
.. code-block:: python |
|
|
|
import json |
|
|
|
messages = json.loads(formatted_output["source"]) |
|
|
|
response = client.chat.completions.create( |
|
model="gpt-4o", |
|
messages=messages, |
|
) |
|
|
|
The resulting `messages` is now a dictionary ready for sending to the OpenAI API. |
|
""" |
|
|
|
def to_content(self, text: str, media: Dict[str, Any]) -> Union[str, List[Content]]: |
|
|
|
img_tag_pattern = re.compile( |
|
r"<" + f"{constants.image_tag}" + r'\s+[^>]*src=["\']([^"\']+)["\'][^>]*>', |
|
re.IGNORECASE, |
|
) |
|
|
|
|
|
matches = list(img_tag_pattern.finditer(text)) |
|
|
|
|
|
if not matches: |
|
return text |
|
|
|
contents: List[dict] = [] |
|
last_pos = 0 |
|
|
|
|
|
for match in matches: |
|
start, end = match.span() |
|
img_url = match.group(1) |
|
|
|
|
|
if last_pos < start: |
|
contents.append({"type": "text", "text": text[last_pos:start]}) |
|
|
|
|
|
if img_url.startswith("media/"): |
|
image = dict_get(media, img_url[6:]) |
|
data_url = image_to_data_url(image) |
|
contents.append( |
|
{ |
|
"type": "image_url", |
|
"image_url": {"url": data_url, "detail": "low"}, |
|
} |
|
) |
|
else: |
|
contents.append( |
|
{ |
|
"type": "image_url", |
|
"image_url": {"url": img_url, "detail": "low"}, |
|
} |
|
) |
|
|
|
|
|
last_pos = end |
|
|
|
|
|
if last_pos < len(text): |
|
contents.append({"type": "text", "text": text[last_pos:]}) |
|
|
|
return contents |
|
|
|
def to_chat( |
|
self, |
|
system_prompt: str, |
|
instruction: str, |
|
source: str, |
|
target_prefix: str, |
|
demos: List[Dict[str, Any]], |
|
media: Optional[Dict[str, Any]] = None, |
|
) -> List[Message]: |
|
messages = [] |
|
|
|
if system_prompt or instruction: |
|
system_content = self.to_content( |
|
system_prompt + ("\n" if system_prompt != "" else "") + instruction, |
|
media, |
|
) |
|
messages.append( |
|
{ |
|
"role": "system", |
|
"content": system_content, |
|
} |
|
) |
|
|
|
for demo_instance in demos: |
|
user_content = self.to_content(demo_instance["source"], media) |
|
assistant_content = self.to_content( |
|
target_prefix + demo_instance["target"], media |
|
) |
|
messages.extend( |
|
[ |
|
{"role": "user", "content": user_content}, |
|
{ |
|
"role": "assistant", |
|
"content": assistant_content, |
|
}, |
|
] |
|
) |
|
|
|
last_user_content = self.to_content(source, media) |
|
|
|
messages.extend([{"role": "user", "content": last_user_content}]) |
|
|
|
return messages |
|
|
|
def _format_instance_to_source( |
|
self, |
|
system_prompt: str, |
|
instruction: str, |
|
source: str, |
|
target_prefix: str, |
|
demos: List[Dict[str, Any]], |
|
media: Optional[Dict[str, Any]] = None, |
|
) -> Union[str, List[Message]]: |
|
chat = self.to_chat( |
|
system_prompt, |
|
instruction, |
|
source, |
|
target_prefix, |
|
demos, |
|
media, |
|
) |
|
media["images"] = [] |
|
return chat |
|
|
|
|
|
class HFSystemFormat(ChatAPIFormat): |
|
r"""Formats the complete input for the model using the HuggingFace chat template of a given model. |
|
|
|
HFSystemFormat expects the input instance to contain: |
|
1. A field named "system_prompt" whose value is a string (potentially empty) that delivers a task-independent opening text. |
|
2. A field named "source" whose value is a string verbalizing the original values in the instance (as read |
|
from the source dataset), in the context of the underlying task. |
|
3. A field named "instruction" that contains a (non-None) string. |
|
4. A field named with the value in arg 'demos_field', containing a list of dicts, each dict with fields "source" |
|
and "target", representing a single demo. |
|
5. A field named "target_prefix" that contains a string to prefix the target in each demo, and to end the whole generated prompt. |
|
|
|
SystemFormat formats the above fields into a single string to be inputted to the model. This string overwrites |
|
field "source" of the instance. |
|
|
|
Example: |
|
HFSystemFormat(model_name="HuggingFaceH4/zephyr-7b-beta") |
|
|
|
Uses the template defined the in tokenizer_config.json of the model: |
|
|
|
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}", |
|
|
|
See more details in https://huggingface.co/docs/transformers/main/en/chat_templating |
|
|
|
""" |
|
|
|
model_name: str |
|
_requirements_list = ["transformers", "Jinja2"] |
|
|
|
def prepare(self): |
|
super().prepare() |
|
from transformers import AutoTokenizer |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) |
|
|
|
def _format_instance_to_source( |
|
self, |
|
system_prompt: str, |
|
instruction: str, |
|
source: str, |
|
target_prefix: str, |
|
demos: List[Dict[str, Any]], |
|
media: Optional[Dict[str, Any]] = None, |
|
) -> str: |
|
chat = self.to_chat( |
|
system_prompt, instruction, source, target_prefix, demos, media |
|
) |
|
return ( |
|
self.tokenizer.apply_chat_template( |
|
chat, tokenize=False, add_generation_prompt=True |
|
) |
|
+ target_prefix |
|
) |
|
|