metric / stream.py
Elron's picture
Upload folder using huggingface_hub
b462f85 verified
raw
history blame
6.67 kB
import tempfile
from abc import abstractmethod
from typing import Any, Callable, Dict, Iterable, List
from datasets import Dataset, DatasetDict, IterableDataset, IterableDatasetDict
from .dataclass import Dataclass, OptionalField
from .generator_utils import CopyingReusableGenerator, ReusableGenerator
class Stream(Dataclass):
@abstractmethod
def __iter__(self):
pass
@abstractmethod
def peek(self):
pass
@abstractmethod
def take(self, n):
pass
class ListStream(Stream):
instances_list: List[Dict[str, Any]]
def __iter__(self):
return iter(self.instances_list)
def peek(self):
return next(iter(self.instances_list))
def take(self, n):
for i, instance in enumerate(self.instances_list):
if i >= n:
break
yield instance
class GeneratorStream(Stream):
"""A class for handling streaming data in a customizable way.
This class provides methods for generating, caching, and manipulating streaming data.
Attributes:
generator (function): A generator function for streaming data. :no-index:
gen_kwargs (dict, optional): A dictionary of keyword arguments for the generator function. :no-index:
caching (bool): Whether the data is cached or not. :no-index:
"""
generator: Callable
gen_kwargs: Dict[str, Any] = OptionalField(default_factory=dict)
caching: bool = False
copying: bool = False
def _get_initiator(self):
"""Private method to get the correct initiator based on the streaming and caching attributes.
Returns:
function: The correct initiator function.
"""
if self.caching:
return Dataset.from_generator
if self.copying:
return CopyingReusableGenerator
return ReusableGenerator
def _get_stream(self):
"""Private method to get the stream based on the initiator function.
Returns:
object: The stream object.
"""
return self._get_initiator()(self.generator, gen_kwargs=self.gen_kwargs)
def __iter__(self):
return iter(self._get_stream())
def peek(self):
return next(iter(self))
def take(self, n):
for i, instance in enumerate(self):
if i >= n:
break
yield instance
class MultiStream(dict):
"""A class for handling multiple streams of data in a dictionary-like format.
This class extends dict and its values should be instances of the Stream class.
Attributes:
data (dict): A dictionary of Stream objects.
"""
def __init__(self, data=None):
"""Initializes the MultiStream with the provided data.
Args:
data (dict, optional): A dictionary of Stream objects. Defaults to None.
Raises:
AssertionError: If the values are not instances of Stream or keys are not strings.
"""
for key, value in data.items():
isinstance(value, Stream), "MultiStream values must be Stream"
isinstance(key, str), "MultiStream keys must be strings"
super().__init__(data)
def get_generator(self, key):
"""Gets a generator for a specified key.
Args:
key (str): The key for the generator.
Yields:
object: The next value in the stream.
"""
yield from self[key]
def set_caching(self, caching: bool):
for stream in self.values():
stream.caching = caching
def set_copying(self, copying: bool):
for stream in self.values():
stream.copying = copying
def to_dataset(self, disable_cache=True, cache_dir=None) -> DatasetDict:
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
cache_dir = dir_to_be_deleted if disable_cache else cache_dir
return DatasetDict(
{
key: Dataset.from_generator(
self.get_generator,
keep_in_memory=disable_cache,
cache_dir=cache_dir,
gen_kwargs={"key": key},
)
for key in self.keys()
}
)
def to_iterable_dataset(self) -> IterableDatasetDict:
return IterableDatasetDict(
{
key: IterableDataset.from_generator(
self.get_generator, gen_kwargs={"key": key}
)
for key in self.keys()
}
)
def __setitem__(self, key, value):
assert isinstance(value, Stream), "StreamDict values must be Stream"
assert isinstance(key, str), "StreamDict keys must be strings"
super().__setitem__(key, value)
@classmethod
def from_generators(
cls, generators: Dict[str, ReusableGenerator], caching=False, copying=False
):
"""Creates a MultiStream from a dictionary of ReusableGenerators.
Args:
generators (Dict[str, ReusableGenerator]): A dictionary of ReusableGenerators.
caching (bool, optional): Whether the data should be cached or not. Defaults to False.
copying (bool, optional): Whether the data should be copied or not. Defaults to False.
Returns:
MultiStream: A MultiStream object.
"""
assert all(isinstance(v, ReusableGenerator) for v in generators.values())
return cls(
{
key: GeneratorStream(
generator.generator,
gen_kwargs=generator.gen_kwargs,
caching=caching,
copying=copying,
)
for key, generator in generators.items()
}
)
@classmethod
def from_iterables(
cls, iterables: Dict[str, Iterable], caching=False, copying=False
):
"""Creates a MultiStream from a dictionary of iterables.
Args:
iterables (Dict[str, Iterable]): A dictionary of iterables.
caching (bool, optional): Whether the data should be cached or not. Defaults to False.
copying (bool, optional): Whether the data should be copied or not. Defaults to False.
Returns:
MultiStream: A MultiStream object.
"""
return cls(
{
key: GeneratorStream(
iterable.__iter__,
caching=caching,
copying=copying,
)
for key, iterable in iterables.items()
}
)