linly / src /face3d /models /base_model.py
David Victor
init
bc3753a
"""This script defines the base network model for Deep3DFaceRecon_pytorch
"""
import os
import numpy as np
import torch
from collections import OrderedDict
from abc import ABC, abstractmethod
from . import networks
class BaseModel(ABC):
"""This class is an abstract base class (ABC) for models.
To create a subclass, you need to implement the following five functions:
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
-- <set_input>: unpack data from dataset and apply preprocessing.
-- <forward>: produce intermediate results.
-- <optimize_parameters>: calculate losses, gradients, and update network weights.
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
"""
def __init__(self, opt):
"""Initialize the BaseModel class.
Parameters:
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
When creating your custom class, you need to implement your own initialization.
In this fucntion, you should first call <BaseModel.__init__(self, opt)>
Then, you need to define four lists:
-- self.loss_names (str list): specify the training losses that you want to plot and save.
-- self.model_names (str list): specify the images that you want to display and save.
-- self.visual_names (str list): define networks used in our training.
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
"""
self.opt = opt
self.isTrain = False
self.device = torch.device('cpu')
self.save_dir = " " # os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir
self.loss_names = []
self.model_names = []
self.visual_names = []
self.parallel_names = []
self.optimizers = []
self.image_paths = []
self.metric = 0 # used for learning rate policy 'plateau'
@staticmethod
def dict_grad_hook_factory(add_func=lambda x: x):
saved_dict = dict()
def hook_gen(name):
def grad_hook(grad):
saved_vals = add_func(grad)
saved_dict[name] = saved_vals
return grad_hook
return hook_gen, saved_dict
@staticmethod
def modify_commandline_options(parser, is_train):
"""Add new model-specific options, and rewrite default values for existing options.
Parameters:
parser -- original option parser
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
Returns:
the modified parser.
"""
return parser
@abstractmethod
def set_input(self, input):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters:
input (dict): includes the data itself and its metadata information.
"""
pass
@abstractmethod
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
pass
@abstractmethod
def optimize_parameters(self):
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
pass
def setup(self, opt):
"""Load and print networks; create schedulers
Parameters:
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
if self.isTrain:
self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
if not self.isTrain or opt.continue_train:
load_suffix = opt.epoch
self.load_networks(load_suffix)
# self.print_networks(opt.verbose)
def parallelize(self, convert_sync_batchnorm=True):
if not self.opt.use_ddp:
for name in self.parallel_names:
if isinstance(name, str):
module = getattr(self, name)
setattr(self, name, module.to(self.device))
else:
for name in self.model_names:
if isinstance(name, str):
module = getattr(self, name)
if convert_sync_batchnorm:
module = torch.nn.SyncBatchNorm.convert_sync_batchnorm(module)
setattr(self, name, torch.nn.parallel.DistributedDataParallel(module.to(self.device),
device_ids=[self.device.index],
find_unused_parameters=True, broadcast_buffers=True))
# DistributedDataParallel is not needed when a module doesn't have any parameter that requires a gradient.
for name in self.parallel_names:
if isinstance(name, str) and name not in self.model_names:
module = getattr(self, name)
setattr(self, name, module.to(self.device))
# put state_dict of optimizer to gpu device
if self.opt.phase != 'test':
if self.opt.continue_train:
for optim in self.optimizers:
for state in optim.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(self.device)
def data_dependent_initialize(self, data):
pass
def train(self):
"""Make models train mode"""
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, name)
net.train()
def eval(self):
"""Make models eval mode"""
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, name)
net.eval()
def test(self):
"""Forward function used in test time.
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
It also calls <compute_visuals> to produce additional visualization results
"""
with torch.no_grad():
self.forward()
self.compute_visuals()
def compute_visuals(self):
"""Calculate additional output images for visdom and HTML visualization"""
pass
def get_image_paths(self, name='A'):
""" Return image paths that are used to load current data"""
return self.image_paths if name =='A' else self.image_paths_B
def update_learning_rate(self):
"""Update learning rates for all the networks; called at the end of every epoch"""
for scheduler in self.schedulers:
if self.opt.lr_policy == 'plateau':
scheduler.step(self.metric)
else:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']
print('learning rate = %.7f' % lr)
def get_current_visuals(self):
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
visual_ret = OrderedDict()
for name in self.visual_names:
if isinstance(name, str):
visual_ret[name] = getattr(self, name)[:, :3, ...]
return visual_ret
def get_current_losses(self):
"""Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
errors_ret = OrderedDict()
for name in self.loss_names:
if isinstance(name, str):
errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number
return errors_ret
def save_networks(self, epoch):
"""Save all the networks to the disk.
Parameters:
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
"""
if not os.path.isdir(self.save_dir):
os.makedirs(self.save_dir)
save_filename = 'epoch_%s.pth' % (epoch)
save_path = os.path.join(self.save_dir, save_filename)
save_dict = {}
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, name)
if isinstance(net, torch.nn.DataParallel) or isinstance(net,
torch.nn.parallel.DistributedDataParallel):
net = net.module
save_dict[name] = net.state_dict()
for i, optim in enumerate(self.optimizers):
save_dict['opt_%02d'%i] = optim.state_dict()
for i, sched in enumerate(self.schedulers):
save_dict['sched_%02d'%i] = sched.state_dict()
torch.save(save_dict, save_path)
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
"""Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
key = keys[i]
if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
if module.__class__.__name__.startswith('InstanceNorm') and \
(key == 'running_mean' or key == 'running_var'):
if getattr(module, key) is None:
state_dict.pop('.'.join(keys))
if module.__class__.__name__.startswith('InstanceNorm') and \
(key == 'num_batches_tracked'):
state_dict.pop('.'.join(keys))
else:
self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
def load_networks(self, epoch):
"""Load all the networks from the disk.
Parameters:
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
"""
if self.opt.isTrain and self.opt.pretrained_name is not None:
load_dir = os.path.join(self.opt.checkpoints_dir, self.opt.pretrained_name)
else:
load_dir = self.save_dir
load_filename = 'epoch_%s.pth' % (epoch)
load_path = os.path.join(load_dir, load_filename)
state_dict = torch.load(load_path, map_location=self.device)
print('loading the model from %s' % load_path)
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, name)
if isinstance(net, torch.nn.DataParallel):
net = net.module
net.load_state_dict(state_dict[name])
if self.opt.phase != 'test':
if self.opt.continue_train:
print('loading the optim from %s' % load_path)
for i, optim in enumerate(self.optimizers):
optim.load_state_dict(state_dict['opt_%02d'%i])
try:
print('loading the sched from %s' % load_path)
for i, sched in enumerate(self.schedulers):
sched.load_state_dict(state_dict['sched_%02d'%i])
except:
print('Failed to load schedulers, set schedulers according to epoch count manually')
for i, sched in enumerate(self.schedulers):
sched.last_epoch = self.opt.epoch_count - 1
def print_networks(self, verbose):
"""Print the total number of parameters in the network and (if verbose) network architecture
Parameters:
verbose (bool) -- if verbose: print the network architecture
"""
print('---------- Networks initialized -------------')
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, name)
num_params = 0
for param in net.parameters():
num_params += param.numel()
if verbose:
print(net)
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
print('-----------------------------------------------')
def set_requires_grad(self, nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def generate_visuals_for_evaluation(self, data, mode):
return {}