Spaces:
Running
Running
import argparse | |
import os | |
import pickle | |
import timeit | |
import cv2 | |
import mxnet as mx | |
import numpy as np | |
import pandas as pd | |
import prettytable | |
import skimage.transform | |
from sklearn.metrics import roc_curve | |
from sklearn.preprocessing import normalize | |
from onnx_helper import ArcFaceORT | |
SRC = np.array( | |
[ | |
[30.2946, 51.6963], | |
[65.5318, 51.5014], | |
[48.0252, 71.7366], | |
[33.5493, 92.3655], | |
[62.7299, 92.2041]] | |
, dtype=np.float32) | |
SRC[:, 0] += 8.0 | |
class AlignedDataSet(mx.gluon.data.Dataset): | |
def __init__(self, root, lines, align=True): | |
self.lines = lines | |
self.root = root | |
self.align = align | |
def __len__(self): | |
return len(self.lines) | |
def __getitem__(self, idx): | |
each_line = self.lines[idx] | |
name_lmk_score = each_line.strip().split(' ') | |
name = os.path.join(self.root, name_lmk_score[0]) | |
img = cv2.cvtColor(cv2.imread(name), cv2.COLOR_BGR2RGB) | |
landmark5 = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32).reshape((5, 2)) | |
st = skimage.transform.SimilarityTransform() | |
st.estimate(landmark5, SRC) | |
img = cv2.warpAffine(img, st.params[0:2, :], (112, 112), borderValue=0.0) | |
img_1 = np.expand_dims(img, 0) | |
img_2 = np.expand_dims(np.fliplr(img), 0) | |
output = np.concatenate((img_1, img_2), axis=0).astype(np.float32) | |
output = np.transpose(output, (0, 3, 1, 2)) | |
output = mx.nd.array(output) | |
return output | |
def extract(model_root, dataset): | |
model = ArcFaceORT(model_path=model_root) | |
model.check() | |
feat_mat = np.zeros(shape=(len(dataset), 2 * model.feat_dim)) | |
def batchify_fn(data): | |
return mx.nd.concat(*data, dim=0) | |
data_loader = mx.gluon.data.DataLoader( | |
dataset, 128, last_batch='keep', num_workers=4, | |
thread_pool=True, prefetch=16, batchify_fn=batchify_fn) | |
num_iter = 0 | |
for batch in data_loader: | |
batch = batch.asnumpy() | |
batch = (batch - model.input_mean) / model.input_std | |
feat = model.session.run(model.output_names, {model.input_name: batch})[0] | |
feat = np.reshape(feat, (-1, model.feat_dim * 2)) | |
feat_mat[128 * num_iter: 128 * num_iter + feat.shape[0], :] = feat | |
num_iter += 1 | |
if num_iter % 50 == 0: | |
print(num_iter) | |
return feat_mat | |
def read_template_media_list(path): | |
ijb_meta = pd.read_csv(path, sep=' ', header=None).values | |
templates = ijb_meta[:, 1].astype(np.int) | |
medias = ijb_meta[:, 2].astype(np.int) | |
return templates, medias | |
def read_template_pair_list(path): | |
pairs = pd.read_csv(path, sep=' ', header=None).values | |
t1 = pairs[:, 0].astype(np.int) | |
t2 = pairs[:, 1].astype(np.int) | |
label = pairs[:, 2].astype(np.int) | |
return t1, t2, label | |
def read_image_feature(path): | |
with open(path, 'rb') as fid: | |
img_feats = pickle.load(fid) | |
return img_feats | |
def image2template_feature(img_feats=None, | |
templates=None, | |
medias=None): | |
unique_templates = np.unique(templates) | |
template_feats = np.zeros((len(unique_templates), img_feats.shape[1])) | |
for count_template, uqt in enumerate(unique_templates): | |
(ind_t,) = np.where(templates == uqt) | |
face_norm_feats = img_feats[ind_t] | |
face_medias = medias[ind_t] | |
unique_medias, unique_media_counts = np.unique(face_medias, return_counts=True) | |
media_norm_feats = [] | |
for u, ct in zip(unique_medias, unique_media_counts): | |
(ind_m,) = np.where(face_medias == u) | |
if ct == 1: | |
media_norm_feats += [face_norm_feats[ind_m]] | |
else: # image features from the same video will be aggregated into one feature | |
media_norm_feats += [np.mean(face_norm_feats[ind_m], axis=0, keepdims=True), ] | |
media_norm_feats = np.array(media_norm_feats) | |
template_feats[count_template] = np.sum(media_norm_feats, axis=0) | |
if count_template % 2000 == 0: | |
print('Finish Calculating {} template features.'.format( | |
count_template)) | |
template_norm_feats = normalize(template_feats) | |
return template_norm_feats, unique_templates | |
def verification(template_norm_feats=None, | |
unique_templates=None, | |
p1=None, | |
p2=None): | |
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) | |
for count_template, uqt in enumerate(unique_templates): | |
template2id[uqt] = count_template | |
score = np.zeros((len(p1),)) | |
total_pairs = np.array(range(len(p1))) | |
batchsize = 100000 | |
sublists = [total_pairs[i: i + batchsize] for i in range(0, len(p1), batchsize)] | |
total_sublists = len(sublists) | |
for c, s in enumerate(sublists): | |
feat1 = template_norm_feats[template2id[p1[s]]] | |
feat2 = template_norm_feats[template2id[p2[s]]] | |
similarity_score = np.sum(feat1 * feat2, -1) | |
score[s] = similarity_score.flatten() | |
if c % 10 == 0: | |
print('Finish {}/{} pairs.'.format(c, total_sublists)) | |
return score | |
def verification2(template_norm_feats=None, | |
unique_templates=None, | |
p1=None, | |
p2=None): | |
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) | |
for count_template, uqt in enumerate(unique_templates): | |
template2id[uqt] = count_template | |
score = np.zeros((len(p1),)) # save cosine distance between pairs | |
total_pairs = np.array(range(len(p1))) | |
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation | |
sublists = [total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)] | |
total_sublists = len(sublists) | |
for c, s in enumerate(sublists): | |
feat1 = template_norm_feats[template2id[p1[s]]] | |
feat2 = template_norm_feats[template2id[p2[s]]] | |
similarity_score = np.sum(feat1 * feat2, -1) | |
score[s] = similarity_score.flatten() | |
if c % 10 == 0: | |
print('Finish {}/{} pairs.'.format(c, total_sublists)) | |
return score | |
def main(args): | |
use_norm_score = True # if Ture, TestMode(N1) | |
use_detector_score = True # if Ture, TestMode(D1) | |
use_flip_test = True # if Ture, TestMode(F1) | |
assert args.target == 'IJBC' or args.target == 'IJBB' | |
start = timeit.default_timer() | |
templates, medias = read_template_media_list( | |
os.path.join('%s/meta' % args.image_path, '%s_face_tid_mid.txt' % args.target.lower())) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
start = timeit.default_timer() | |
p1, p2, label = read_template_pair_list( | |
os.path.join('%s/meta' % args.image_path, | |
'%s_template_pair_label.txt' % args.target.lower())) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
start = timeit.default_timer() | |
img_path = '%s/loose_crop' % args.image_path | |
img_list_path = '%s/meta/%s_name_5pts_score.txt' % (args.image_path, args.target.lower()) | |
img_list = open(img_list_path) | |
files = img_list.readlines() | |
dataset = AlignedDataSet(root=img_path, lines=files, align=True) | |
img_feats = extract(args.model_root, dataset) | |
faceness_scores = [] | |
for each_line in files: | |
name_lmk_score = each_line.split() | |
faceness_scores.append(name_lmk_score[-1]) | |
faceness_scores = np.array(faceness_scores).astype(np.float32) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0], img_feats.shape[1])) | |
start = timeit.default_timer() | |
if use_flip_test: | |
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] + img_feats[:, img_feats.shape[1] // 2:] | |
else: | |
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] | |
if use_norm_score: | |
img_input_feats = img_input_feats | |
else: | |
img_input_feats = img_input_feats / np.sqrt(np.sum(img_input_feats ** 2, -1, keepdims=True)) | |
if use_detector_score: | |
print(img_input_feats.shape, faceness_scores.shape) | |
img_input_feats = img_input_feats * faceness_scores[:, np.newaxis] | |
else: | |
img_input_feats = img_input_feats | |
template_norm_feats, unique_templates = image2template_feature( | |
img_input_feats, templates, medias) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
start = timeit.default_timer() | |
score = verification(template_norm_feats, unique_templates, p1, p2) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
save_path = os.path.join(args.result_dir, "{}_result".format(args.target)) | |
if not os.path.exists(save_path): | |
os.makedirs(save_path) | |
score_save_file = os.path.join(save_path, "{}.npy".format(args.model_root)) | |
np.save(score_save_file, score) | |
files = [score_save_file] | |
methods = [] | |
scores = [] | |
for file in files: | |
methods.append(os.path.basename(file)) | |
scores.append(np.load(file)) | |
methods = np.array(methods) | |
scores = dict(zip(methods, scores)) | |
x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1] | |
tpr_fpr_table = prettytable.PrettyTable(['Methods'] + [str(x) for x in x_labels]) | |
for method in methods: | |
fpr, tpr, _ = roc_curve(label, scores[method]) | |
fpr = np.flipud(fpr) | |
tpr = np.flipud(tpr) | |
tpr_fpr_row = [] | |
tpr_fpr_row.append("%s-%s" % (method, args.target)) | |
for fpr_iter in np.arange(len(x_labels)): | |
_, min_index = min( | |
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) | |
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) | |
tpr_fpr_table.add_row(tpr_fpr_row) | |
print(tpr_fpr_table) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='do ijb test') | |
# general | |
parser.add_argument('--model-root', default='', help='path to load model.') | |
parser.add_argument('--image-path', default='', type=str, help='') | |
parser.add_argument('--result-dir', default='.', type=str, help='') | |
parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB') | |
main(parser.parse_args()) | |