Spaces:
Running
Running
import LangSegment | |
import numpy as np | |
import librosa | |
import torch | |
import re, os | |
import librosa | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import sys | |
sys.path.append('GPT_SoVITS/') | |
from text import cleaned_text_to_sequence | |
from text.cleaner import clean_text | |
from feature_extractor import cnhubert | |
from my_utils import load_audio | |
from module.mel_processing import spectrogram_torch | |
from module.models import SynthesizerTrn | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from scipy.io.wavfile import write | |
from time import time as ttime | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
is_half = True | |
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } | |
if device == "cuda": | |
gpu_name = torch.cuda.get_device_name(0) | |
if ( | |
("16" in gpu_name and "V100" not in gpu_name.upper()) | |
or "P40" in gpu_name.upper() | |
or "P10" in gpu_name.upper() | |
or "1060" in gpu_name | |
or "1070" in gpu_name | |
or "1080" in gpu_name | |
): | |
is_half=False | |
if device=="cpu": | |
is_half=False | |
dtype=torch.float16 if is_half == True else torch.float32 | |
bert_path = os.environ.get( | |
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" | |
) | |
cnhubert_base_path = os.environ.get( | |
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base" | |
) | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def clean_text_inf(text, language): | |
phones, word2ph, norm_text = clean_text(text, language.replace("all_","")) | |
phones = cleaned_text_to_sequence(phones) | |
return phones, word2ph, norm_text | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
language=language.replace("all_","") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
def splite_en_inf(sentence, language): | |
pattern = re.compile(r'[a-zA-Z ]+') | |
textlist = [] | |
langlist = [] | |
pos = 0 | |
for match in pattern.finditer(sentence): | |
start, end = match.span() | |
if start > pos: | |
textlist.append(sentence[pos:start]) | |
langlist.append(language) | |
textlist.append(sentence[start:end]) | |
langlist.append("en") | |
pos = end | |
if pos < len(sentence): | |
textlist.append(sentence[pos:]) | |
langlist.append(language) | |
# Merge punctuation into previous word | |
for i in range(len(textlist)-1, 0, -1): | |
if re.match(r'^[\W_]+$', textlist[i]): | |
textlist[i-1] += textlist[i] | |
del textlist[i] | |
del langlist[i] | |
# Merge consecutive words with the same language tag | |
i = 0 | |
while i < len(langlist) - 1: | |
if langlist[i] == langlist[i+1]: | |
textlist[i] += textlist[i+1] | |
del textlist[i+1] | |
del langlist[i+1] | |
else: | |
i += 1 | |
return textlist, langlist | |
def nonen_clean_text_inf(text, language): | |
if(language!="auto"): | |
textlist, langlist = splite_en_inf(text, language) | |
else: | |
textlist=[] | |
langlist=[] | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
phones_list = [] | |
word2ph_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
phones_list.append(phones) | |
if lang == "zh": | |
word2ph_list.append(word2ph) | |
norm_text_list.append(norm_text) | |
print(word2ph_list) | |
phones = sum(phones_list, []) | |
word2ph = sum(word2ph_list, []) | |
norm_text = ' '.join(norm_text_list) | |
return phones, word2ph, norm_text | |
def nonen_get_bert_inf(text, language): | |
if(language!="auto"): | |
textlist, langlist = splite_en_inf(text, language) | |
else: | |
textlist=[] | |
langlist=[] | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
bert_list = [] | |
for i in range(len(textlist)): | |
text = textlist[i] | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(text, lang) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
return bert | |
def get_first(text): | |
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
text = re.split(pattern, text)[0].strip() | |
return text | |
def get_cleaned_text_fianl(text,language): | |
if language in {"en","all_zh","all_ja"}: | |
phones, word2ph, norm_text = clean_text_inf(text, language) | |
elif language in {"zh", "ja","auto"}: | |
phones, word2ph, norm_text = nonen_clean_text_inf(text, language) | |
return phones, word2ph, norm_text | |
def get_bert_final(phones, word2ph, norm_text, text_language, device, text): | |
if text_language == "en": | |
bert = get_bert_inf(phones, word2ph, norm_text, text_language) | |
elif text_language in {"zh", "ja","auto"}: | |
bert = nonen_get_bert_inf(text, text_language) | |
elif text_language == "all_zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device) | |
else: | |
bert = torch.zeros((1024, len(phones))).to(device) | |
return bert | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in splits: | |
todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if todo_text[i_split_head] in splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
split_idx = list(range(0, len(inps), 4)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
if len(inps) < 2: | |
return inp | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
# print(opts) | |
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s" % item for item in inp.strip("。").split("。")]) | |
def cut4(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s" % item for item in inp.strip(".").split(".")]) | |
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
def cut5(inp): | |
# if not re.search(r'[^\w\s]', inp[-1]): | |
# inp += '。' | |
inp = inp.strip("\n") | |
punds = r'[,.;?!、,。?!;:]' | |
items = re.split(f'({punds})', inp) | |
items = ["".join(group) for group in zip(items[::2], items[1::2])] | |
opt = "\n".join(items) | |
return opt | |
class GPT_SoVITS: | |
def __init__(self): | |
self.model = None | |
# is_half = True | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
def load_model(self, gpt_path, sovits_path): | |
self.hz = 50 | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
self.config = dict_s1["config"] | |
self.max_sec = self.config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(self.config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
self.t2s_model = t2s_model.to(device) | |
self.t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
self.hps = dict_s2["config"] | |
self.hps = DictToAttrRecursive(self.hps) | |
self.hps.model.semantic_frame_rate = "25hz" | |
vq_model = SynthesizerTrn( | |
self.hps.data.filter_length // 2 + 1, | |
self.hps.train.segment_size // self.hps.data.hop_length, | |
n_speakers=self.hps.data.n_speakers, | |
**self.hps.model | |
) | |
if ("pretrained" not in sovits_path): | |
del vq_model.enc_q | |
if is_half == True: | |
self.vq_model = vq_model.half().to(device) | |
else: | |
self.vq_model = vq_model.to(device) | |
self.vq_model.eval() | |
print(self.vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
def predict(self, ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut="不切", save_path = 'vits_res.wav'): | |
print(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut) | |
return self.get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut, save_path) | |
def get_tts_wav(self, ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut="不切", save_path = 'vits_res.wav'): | |
t0 = ttime() | |
prompt_text = prompt_text.strip("\n") | |
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." | |
text = text.strip("\n") | |
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text | |
print("实际输入的参考文本:", prompt_text) | |
print("实际输入的目标文本:", text) | |
zero_wav = np.zeros( | |
int(self.hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | |
raise OSError("参考音频在3~10秒范围外,请更换!") | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
zero_wav_torch = zero_wav_torch.to(device) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = self.vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
dict_language = { | |
"中文": "all_zh",#全部按中文识别 | |
"英文": "en",#全部按英文识别#######不变 | |
"日文": "all_ja",#全部按日文识别 | |
"中英混合": "zh",#按中英混合识别####不变 | |
"日英混合": "ja",#按日英混合识别####不变 | |
"多语种混合": "auto",#多语种启动切分识别语种 | |
} | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
phones1, word2ph1, norm_text1=get_cleaned_text_fianl(prompt_text, prompt_language) | |
if (how_to_cut == "凑四句一切"): | |
text = cut1(text) | |
elif (how_to_cut == "凑50字一切"): | |
text = cut2(text) | |
elif (how_to_cut == "按中文句号。切"): | |
text = cut3(text) | |
elif (how_to_cut == "按英文句号.切"): | |
text = cut4(text) | |
elif (how_to_cut == "按标点符号切"): | |
text = cut5(text) | |
text = text.replace("\n\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n") | |
print("实际输入的目标文本(切句后):", text) | |
texts = text.split("\n") | |
audio_opt = [] | |
bert1=get_bert_final(phones1, word2ph1, norm_text1, prompt_language, device, text).to(dtype) | |
for text in texts: | |
# 解决输入目标文本的空行导致报错的问题 | |
if (len(text.strip()) == 0): | |
continue | |
if (text[-1] not in splits): text += "。" if text_language != "en" else "." | |
print("实际输入的目标文本(每句):", text) | |
phones2, word2ph2, norm_text2 = get_cleaned_text_fianl(text, text_language) | |
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device, text).to(dtype) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic, idx = self.t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=self.config["inference"]["top_k"], | |
early_stop_num=self.hz * self.max_sec, | |
) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze( | |
0 | |
) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(self.hps, ref_wav_path) # .to(device) | |
if is_half == True: | |
refer = refer.half().to(device) | |
else: | |
refer = refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = ( | |
self.vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer | |
) | |
.detach() | |
.cpu() | |
.numpy()[0, 0] | |
) ###试试重建不带上prompt部分 | |
max_audio=np.abs(audio).max()#简单防止16bit爆音 | |
if max_audio>1:audio/=max_audio | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
# yield self.hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( | |
# np.int16 | |
# ) | |
write(save_path, self.hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)) | |
return save_path | |
if __name__ == "__main__": | |
GPT_SoVITS_inference = GPT_SoVITS() | |
gpt_path = "../../GPT-SoVITS/GPT_weights/yansang-e15.ckpt" | |
sovits_path = "../../GPT-SoVITS/SoVITS_weights/yansang_e16_s144.pth" | |
GPT_SoVITS_inference.load_model(gpt_path, sovits_path) | |
ref_wav_path = "../../GPT-SoVITS/output/slicer_opt/vocal_output.wav_10.wav_0000846400_0000957760.wav" | |
prompt_text = "你为什么要一次一次的伤我的心啊?" | |
prompt_language = "中文" | |
text = "大家好,这是我语音克隆的声音,本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE." | |
text_language = "中英混合" | |
how_to_cut = "不切" # ["不切", "凑四句一切", "凑50字一切", "按中文句号。切", "按英文句号.切", "按标点符号切"] | |
GPT_SoVITS_inference.predict(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut) |