unijoh commited on
Commit
1180f3c
1 Parent(s): ff3a5da

Create tts.py

Browse files
Files changed (1) hide show
  1. tts.py +62 -0
tts.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import sys
4
+ import gradio as gr
5
+
6
+ from huggingface_hub import hf_hub_download
7
+
8
+ # Setup TTS env
9
+ if "vits" not in sys.path:
10
+ sys.path.append("vits")
11
+
12
+ from vits import commons, utils
13
+ from vits.models import SynthesizerTrn
14
+
15
+ class TextMapper(object):
16
+ def __init__(self, vocab_file):
17
+ self.symbols = [x.strip() for x in open(vocab_file, encoding="utf-8").readlines()]
18
+ self.SPACE_ID = self.symbols.index(" ")
19
+ self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
20
+
21
+ def text_to_sequence(self, text, cleaner_names):
22
+ sequence = [self._symbol_to_id[symbol] for symbol in text.strip()]
23
+ return sequence
24
+
25
+ def get_text(self, text, hps):
26
+ text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
27
+ if hps.data.add_blank:
28
+ text_norm = commons.intersperse(text_norm, 0)
29
+ return torch.LongTensor(text_norm)
30
+
31
+ def filter_oov(self, text, lang=None):
32
+ val_chars = self._symbol_to_id
33
+ return "".join(filter(lambda x: x in val_chars, text))
34
+
35
+ def synthesize(text, speed):
36
+ if speed is None:
37
+ speed = 1.0
38
+
39
+ lang_code = "fao"
40
+
41
+ vocab_file = hf_hub_download(repo_id="facebook/mms-tts", filename="vocab.txt", subfolder=f"models/{lang_code}")
42
+ config_file = hf_hub_download(repo_id="facebook/mms-tts", filename="config.json", subfolder=f"models/{lang_code}")
43
+ g_pth = hf_hub_download(repo_id="facebook/mms-tts", filename="G_100000.pth", subfolder=f"models/{lang_code}")
44
+
45
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
46
+
47
+ hps = utils.get_hparams_from_file(config_file)
48
+ text_mapper = TextMapper(vocab_file)
49
+ net_g = SynthesizerTrn(len(text_mapper.symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model)
50
+ net_g.to(device)
51
+ net_g.eval()
52
+ utils.load_checkpoint(g_pth, net_g, None)
53
+
54
+ text = text.lower()
55
+ text = text_mapper.filter_oov(text)
56
+ stn_tst = text_mapper.get_text(text, hps)
57
+ with torch.no_grad():
58
+ x_tst = stn_tst.unsqueeze(0).to(device)
59
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
60
+ hyp = net_g.infer(x_tst, x_tst_lengths, noise_scale=0.667, noise_scale_w=0.8, length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
61
+
62
+ return gr.Audio.update(value=(hps.data.sampling_rate, hyp)), text