Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,32 +6,24 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
-
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
|
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
dtype = torch.float16
|
16 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
17 |
|
18 |
repo = "fluently/Fluently-XL-Final"
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
pipe_best.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
23 |
-
pipe_best.set_adapters(["lora","dalle"], adapter_weights=[1.5, 0.5])
|
24 |
-
pipe_best.to("cuda")
|
25 |
-
|
26 |
-
pipe_3D = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
27 |
-
pipe_3D.load_lora_weights("artificialguybr/3DRedmond-V1", weight_name="3DRedmond-3DRenderStyle-3DRenderAF.safetensors", adapter_name="3D")
|
28 |
-
pipe_3D.set_adapters(["3D"])
|
29 |
-
pipe_3D.to("cuda")
|
30 |
-
|
31 |
-
pipe_logo = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
32 |
-
pipe_logo.load_lora_weights("artificialguybr/LogoRedmond-LogoLoraForSDXL", weight_name="LogoRedmond_LogoRedAF.safetensors", adapter_name="logo")
|
33 |
-
pipe_logo.set_adapters(["logo"])
|
34 |
-
pipe_logo.to("cuda")
|
35 |
|
36 |
help_text = """
|
37 |
To optimize image results:
|
@@ -66,7 +58,7 @@ pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_
|
|
66 |
pipe_edit.to("cuda")
|
67 |
|
68 |
# Generator
|
69 |
-
@spaces.GPU(duration=
|
70 |
def king(type ,
|
71 |
input_image ,
|
72 |
instruction: str ,
|
@@ -77,7 +69,7 @@ def king(type ,
|
|
77 |
image_cfg_scale: float = 1.7,
|
78 |
width: int = 1024,
|
79 |
height: int = 1024,
|
80 |
-
|
81 |
use_resolution_binning: bool = True,
|
82 |
progress=gr.Progress(track_tqdm=True),
|
83 |
):
|
@@ -99,14 +91,23 @@ def king(type ,
|
|
99 |
if randomize_seed:
|
100 |
seed = random.randint(0, 99999)
|
101 |
generator = torch.Generator().manual_seed(seed)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
return seed, image
|
111 |
|
112 |
client = InferenceClient()
|
@@ -176,15 +177,10 @@ with gr.Blocks(css=css) as demo:
|
|
176 |
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, info="AI will select option based on your query, but if it selects wrong, please choose correct one.")
|
177 |
with gr.Column(scale=1):
|
178 |
generate_button = gr.Button("Generate")
|
179 |
-
|
180 |
-
style = gr.Radio(choices=["BEST","3D","Logo"],label="Style", value="BEST", interactive=True)
|
181 |
with gr.Row():
|
182 |
input_image = gr.Image(label="Image", type="pil", interactive=True)
|
183 |
|
184 |
-
with gr.Row():
|
185 |
-
width = gr.Number(value=1024, step=16,label="Width", interactive=True)
|
186 |
-
height = gr.Number(value=1024, step=16,label="Height", interactive=True)
|
187 |
-
|
188 |
with gr.Row():
|
189 |
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
|
190 |
image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
|
@@ -207,7 +203,9 @@ with gr.Blocks(css=css) as demo:
|
|
207 |
)
|
208 |
|
209 |
gr.Markdown(help_text)
|
|
|
210 |
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
|
|
211 |
input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
212 |
|
213 |
gr.on(triggers=[
|
@@ -223,9 +221,6 @@ with gr.Blocks(css=css) as demo:
|
|
223 |
seed,
|
224 |
text_cfg_scale,
|
225 |
image_cfg_scale,
|
226 |
-
width,
|
227 |
-
height,
|
228 |
-
style
|
229 |
],
|
230 |
outputs=[seed, input_image],
|
231 |
)
|
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
+
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
13 |
+
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
dtype = torch.float16
|
17 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
18 |
|
19 |
repo = "fluently/Fluently-XL-Final"
|
20 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
21 |
+
pipe.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
22 |
+
pipe.set_adapters("lora")
|
23 |
+
pipe.to("cuda")
|
24 |
|
25 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
26 |
+
refiner.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
help_text = """
|
29 |
To optimize image results:
|
|
|
58 |
pipe_edit.to("cuda")
|
59 |
|
60 |
# Generator
|
61 |
+
@spaces.GPU(duration=30, queue=False)
|
62 |
def king(type ,
|
63 |
input_image ,
|
64 |
instruction: str ,
|
|
|
69 |
image_cfg_scale: float = 1.7,
|
70 |
width: int = 1024,
|
71 |
height: int = 1024,
|
72 |
+
guidance_scale: float = 6,
|
73 |
use_resolution_binning: bool = True,
|
74 |
progress=gr.Progress(track_tqdm=True),
|
75 |
):
|
|
|
91 |
if randomize_seed:
|
92 |
seed = random.randint(0, 99999)
|
93 |
generator = torch.Generator().manual_seed(seed)
|
94 |
+
image = pipe(
|
95 |
+
prompt = instruction,
|
96 |
+
guidance_scale =6,
|
97 |
+
num_inference_steps = steps,
|
98 |
+
width = width,
|
99 |
+
height = height,
|
100 |
+
generator = generator
|
101 |
+
output_type="latent",
|
102 |
+
).images
|
103 |
+
|
104 |
+
refine = refiner(
|
105 |
+
prompt=instruction,
|
106 |
+
guidance_scale=6,
|
107 |
+
num_inference_steps=25,
|
108 |
+
image=image,
|
109 |
+
generator=generator,
|
110 |
+
).images[0]
|
111 |
return seed, image
|
112 |
|
113 |
client = InferenceClient()
|
|
|
177 |
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, info="AI will select option based on your query, but if it selects wrong, please choose correct one.")
|
178 |
with gr.Column(scale=1):
|
179 |
generate_button = gr.Button("Generate")
|
180 |
+
|
|
|
181 |
with gr.Row():
|
182 |
input_image = gr.Image(label="Image", type="pil", interactive=True)
|
183 |
|
|
|
|
|
|
|
|
|
184 |
with gr.Row():
|
185 |
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
|
186 |
image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
|
|
|
203 |
)
|
204 |
|
205 |
gr.Markdown(help_text)
|
206 |
+
|
207 |
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
208 |
+
|
209 |
input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
210 |
|
211 |
gr.on(triggers=[
|
|
|
221 |
seed,
|
222 |
text_cfg_scale,
|
223 |
image_cfg_scale,
|
|
|
|
|
|
|
224 |
],
|
225 |
outputs=[seed, input_image],
|
226 |
)
|