chap0lin commited on
Commit
52d07c2
1 Parent(s): 800da98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -2
app.py CHANGED
@@ -105,12 +105,14 @@ def pre_process():
105
 
106
  def classify(df, new_column = True):
107
  sentencesMCTIList_xp8 = df['opo_pre_tkn']
 
108
 
109
  formatted_sentences = []
110
  for sentence in sentencesMCTIList_xp8:
111
  formatted_sentences.append(json.loads(sentence.replace("'",'"')))
112
-
113
  del sentencesMCTIList_xp8
 
 
114
  words = list(reloaded_w2v_model.wv.vocab)
115
  item_shape = np.shape(reloaded_w2v_model.wv[words[0]])
116
  MCTIinput_vector = []
@@ -126,7 +128,7 @@ def classify(df, new_column = True):
126
 
127
  MCTIinput_padded = pad_sequences(MCTIinput_vector, maxlen=2726, padding='pre')
128
  del MCTIinput_vector
129
-
130
  predictions = reconstructed_model_CNN.predict(MCTIinput_padded)
131
  del MCTIinput_padded
132
  print(predictions)
@@ -153,6 +155,7 @@ reconstructed_model_CNN = keras.models.load_model("best weights CNN.h5",
153
 
154
  def app(operacao, resultado, dados):
155
  data = pd.read_excel(dados)
 
156
 
157
  # boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
158
  # 'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle'],
@@ -174,6 +177,7 @@ def app(operacao, resultado, dados):
174
 
175
  return output
176
  elif operacao == "Apenas Classificação" :
 
177
  df = classify(data, resultado == "Nova Coluna")
178
  output = gen_output(df)
179
 
 
105
 
106
  def classify(df, new_column = True):
107
  sentencesMCTIList_xp8 = df['opo_pre_tkn']
108
+ print("Dados da planilha adquiridos")
109
 
110
  formatted_sentences = []
111
  for sentence in sentencesMCTIList_xp8:
112
  formatted_sentences.append(json.loads(sentence.replace("'",'"')))
 
113
  del sentencesMCTIList_xp8
114
+
115
+ print("Transformado em W2V")
116
  words = list(reloaded_w2v_model.wv.vocab)
117
  item_shape = np.shape(reloaded_w2v_model.wv[words[0]])
118
  MCTIinput_vector = []
 
128
 
129
  MCTIinput_padded = pad_sequences(MCTIinput_vector, maxlen=2726, padding='pre')
130
  del MCTIinput_vector
131
+ print("Sentenças com Padding")
132
  predictions = reconstructed_model_CNN.predict(MCTIinput_padded)
133
  del MCTIinput_padded
134
  print(predictions)
 
155
 
156
  def app(operacao, resultado, dados):
157
  data = pd.read_excel(dados)
158
+ print("Dados Carregados!")
159
 
160
  # boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
161
  # 'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle'],
 
177
 
178
  return output
179
  elif operacao == "Apenas Classificação" :
180
+ print("Apenas Classificação Selecionado!")
181
  df = classify(data, resultado == "Nova Coluna")
182
  output = gen_output(df)
183