Spaces:
Sleeping
Sleeping
umutkavakli
commited on
Commit
•
e04b6d9
1
Parent(s):
adb5729
initial files added
Browse files- app.py +52 -0
- detection.py +82 -0
- requirements.txt +5 -0
- weights/yolov3_best.pt +3 -0
- weights/yolov5_best.pt +3 -0
- weights/yolov8_best.pt +3 -0
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from detection import ObjectDetection
|
3 |
+
|
4 |
+
def get_predictions(img, threshold, box_color, text_color):
|
5 |
+
v3_results = yolov3_detector.score_frame(img)
|
6 |
+
v5_results = yolov5_detector.score_frame(img)
|
7 |
+
v8_results = yolov8_detector.v8_score_frame(img)
|
8 |
+
|
9 |
+
v3_frame = yolov3_detector.plot_bboxes(v3_results, img, float(threshold), box_color, text_color)
|
10 |
+
v5_frame = yolov5_detector.plot_bboxes(v5_results, img, float(threshold), box_color, text_color)
|
11 |
+
v8_frame = yolov8_detector.plot_bboxes(v8_results, img, float(threshold), box_color, text_color)
|
12 |
+
|
13 |
+
|
14 |
+
return v3_frame, v5_frame, v8_frame
|
15 |
+
|
16 |
+
|
17 |
+
with gr.Blocks(title="Leaf Disease Detection", theme=gr.themes.Monochrome()) as interface:
|
18 |
+
gr.Markdown("# Leaf Disease Detection")
|
19 |
+
with gr.Row():
|
20 |
+
with gr.Column():
|
21 |
+
image = gr.Image(shape=(416,416), label="Input Image")
|
22 |
+
with gr.Column():
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Column():
|
25 |
+
box_color = gr.ColorPicker(label="Box Color", value="#0000ff")
|
26 |
+
with gr.Column():
|
27 |
+
text_color = gr.ColorPicker(label="Prediction Color", value="#ff0000")
|
28 |
+
|
29 |
+
confidence = gr.Slider(maximum=1, step=0.01, value=0.4, label="Confidence Threshold", interactive=True)
|
30 |
+
btn = gr.Button("Detect")
|
31 |
+
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Box():
|
34 |
+
v3_prediction = gr.Image(shape=(416,416), label="YOLOv3")
|
35 |
+
with gr.Box():
|
36 |
+
v5_prediction = gr.Image(shape=(416,416), label="YOLOv5")
|
37 |
+
with gr.Box():
|
38 |
+
v8_prediction = gr.Image(shape=(416,416), label="YOLOv8")
|
39 |
+
|
40 |
+
btn.click(
|
41 |
+
get_predictions,
|
42 |
+
[image, confidence, box_color, text_color],
|
43 |
+
[v3_prediction, v5_prediction, v8_prediction]
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
yolov3_detector = ObjectDetection('yolov3')
|
48 |
+
yolov5_detector = ObjectDetection('yolov5')
|
49 |
+
yolov8_detector = ObjectDetection('yolov8')
|
50 |
+
|
51 |
+
interface.launch()
|
52 |
+
|
detection.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import cv2
|
3 |
+
from PIL import ImageColor
|
4 |
+
from ultralytics import YOLO
|
5 |
+
|
6 |
+
|
7 |
+
class ObjectDetection:
|
8 |
+
def __init__(self, model_name='yolov3'):
|
9 |
+
self.model_name = model_name
|
10 |
+
self.model = self.load_model()
|
11 |
+
self.classes = self.model.names
|
12 |
+
self.device = 'cpu'
|
13 |
+
|
14 |
+
def load_model(self):
|
15 |
+
if self.model_name != 'yolov8':
|
16 |
+
model = torch.hub.load(f"ultralytics/{self.model_name}", 'custom', path=f"weights/{self.model_name}_best.pt", force_reload=True)
|
17 |
+
else:
|
18 |
+
model = YOLO(f"weights/{self.model_name}_best.pt")
|
19 |
+
|
20 |
+
return model
|
21 |
+
|
22 |
+
def score_frame(self, frame):
|
23 |
+
results = self.model(frame)
|
24 |
+
|
25 |
+
labels, conf, coord = results.xyxyn[0][:, -1], results.xyxyn[0][:, -2], results.xyxyn[0][:, :-1]
|
26 |
+
return labels, conf, coord
|
27 |
+
|
28 |
+
|
29 |
+
def v8_score_frame(self, frame):
|
30 |
+
results = self.model(frame)
|
31 |
+
|
32 |
+
labels = []
|
33 |
+
confidences = []
|
34 |
+
coords = []
|
35 |
+
|
36 |
+
for result in results:
|
37 |
+
boxes = result.boxes.cpu().numpy()
|
38 |
+
|
39 |
+
label = boxes.cls
|
40 |
+
conf = boxes.conf
|
41 |
+
coord = boxes.xyxy
|
42 |
+
|
43 |
+
labels.extend(label)
|
44 |
+
confidences.extend(conf)
|
45 |
+
coords.extend(coord)
|
46 |
+
|
47 |
+
return labels, confidences, coords
|
48 |
+
|
49 |
+
def get_coords(self, frame, row):
|
50 |
+
|
51 |
+
if self.model_name != 'yolov8':
|
52 |
+
x_shape, y_shape = frame.shape[1], frame.shape[0]
|
53 |
+
return int(row[0] * x_shape), int(row[1] * y_shape), int(row[2] * x_shape), int(row[3] * y_shape)
|
54 |
+
else:
|
55 |
+
return int(row[0]), int(row[1]), int(row[2]), int(row[3])
|
56 |
+
|
57 |
+
def class_to_label(self, x):
|
58 |
+
return self.classes[int(x)]
|
59 |
+
|
60 |
+
def get_color(self, code):
|
61 |
+
rgb = ImageColor.getcolor(code, "RGB")
|
62 |
+
return rgb
|
63 |
+
|
64 |
+
def plot_bboxes(self, results, frame, threshold, box_color, text_color):
|
65 |
+
labels, conf, coord = results
|
66 |
+
n = len(labels)
|
67 |
+
|
68 |
+
frame = frame.copy()
|
69 |
+
box_color = self.get_color(box_color)
|
70 |
+
text_color = self.get_color(text_color)
|
71 |
+
|
72 |
+
for i in range(n):
|
73 |
+
row = coord[i]
|
74 |
+
if conf[i] >= threshold:
|
75 |
+
x1, y1, x2, y2 = self.get_coords(frame, row)
|
76 |
+
class_name = self.class_to_label(labels[i])
|
77 |
+
|
78 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), box_color, 2)
|
79 |
+
cv2.putText(frame, f"{class_name} - {conf[i]*100:.2f}%", (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.5, text_color)
|
80 |
+
|
81 |
+
return frame
|
82 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
cv2
|
3 |
+
PIL
|
4 |
+
ultralytics
|
5 |
+
gradio
|
weights/yolov3_best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de10bcf127d161a673b004e0972c36af506299e14d261b9a0fcdb7ae9fbe77b0
|
3 |
+
size 93039765
|
weights/yolov5_best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77d41071f2ece081a264deac85cd7c6526c814627ef2e6c34137242947c3a33e
|
3 |
+
size 93039637
|
weights/yolov8_best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daed75e7e8751a6a0a5e9aabc77556fa7367de4d4e2511448648232aeb43842e
|
3 |
+
size 87651208
|