umuthopeyildirim
commited on
Commit
•
7098dbe
1
Parent(s):
7a4e452
Refactor image processing and saving logic
Browse files
app.py
CHANGED
@@ -82,17 +82,13 @@ with gr.Blocks(css=css) as demo:
|
|
82 |
def on_submit(image):
|
83 |
original_image = image.copy()
|
84 |
|
|
|
85 |
h, w = image.shape[:2]
|
86 |
|
87 |
-
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
|
88 |
-
# image = transform({'image': image})['image']
|
89 |
-
# image = torch.from_numpy(image).unsqueeze(0).to(DEVICE)
|
90 |
-
|
91 |
image = np.asarray(image, dtype=np.float32) / 255.0
|
92 |
image = torch.from_numpy(image.transpose((2, 0, 1)))
|
93 |
image = Normalize(mean=[0.485, 0.456, 0.406], std=[
|
94 |
0.229, 0.224, 0.225])(image)
|
95 |
-
# image = torch.from_numpy(image).unsqueeze(0)
|
96 |
with torch.no_grad():
|
97 |
image = torch.autograd.Variable(image.unsqueeze(0))
|
98 |
print("== Processing image")
|
@@ -106,19 +102,12 @@ with gr.Blocks(css=css) as demo:
|
|
106 |
# Convert the PyTorch tensor to a NumPy array and squeeze
|
107 |
pred_depth = pred_depth.cpu().numpy().squeeze()
|
108 |
|
109 |
-
# Convert to uint8 if necessary for the colormap
|
110 |
-
pred_output_depth = pred_depth.astype(np.uint8)
|
111 |
-
|
112 |
-
# Apply color map
|
113 |
-
output_image = cv2.applyColorMap(
|
114 |
-
pred_output_depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
|
115 |
-
|
116 |
# Continue with your file saving operations
|
117 |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
118 |
# cv2.imwrite(tmp.name, output_image)
|
119 |
plt.imsave(tmp.name, pred_depth, cmap='jet')
|
120 |
|
121 |
-
return [(original_image,
|
122 |
|
123 |
submit.click(on_submit, inputs=[input_image], outputs=[
|
124 |
depth_image_slider, raw_file])
|
|
|
82 |
def on_submit(image):
|
83 |
original_image = image.copy()
|
84 |
|
85 |
+
# This is for resizing the image to 518x518
|
86 |
h, w = image.shape[:2]
|
87 |
|
|
|
|
|
|
|
|
|
88 |
image = np.asarray(image, dtype=np.float32) / 255.0
|
89 |
image = torch.from_numpy(image.transpose((2, 0, 1)))
|
90 |
image = Normalize(mean=[0.485, 0.456, 0.406], std=[
|
91 |
0.229, 0.224, 0.225])(image)
|
|
|
92 |
with torch.no_grad():
|
93 |
image = torch.autograd.Variable(image.unsqueeze(0))
|
94 |
print("== Processing image")
|
|
|
102 |
# Convert the PyTorch tensor to a NumPy array and squeeze
|
103 |
pred_depth = pred_depth.cpu().numpy().squeeze()
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# Continue with your file saving operations
|
106 |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
107 |
# cv2.imwrite(tmp.name, output_image)
|
108 |
plt.imsave(tmp.name, pred_depth, cmap='jet')
|
109 |
|
110 |
+
return [(original_image, tmp.name), tmp.name]
|
111 |
|
112 |
submit.click(on_submit, inputs=[input_image], outputs=[
|
113 |
depth_image_slider, raw_file])
|