umuthopeyildirim commited on
Commit
7098dbe
1 Parent(s): 7a4e452

Refactor image processing and saving logic

Browse files
Files changed (1) hide show
  1. app.py +2 -13
app.py CHANGED
@@ -82,17 +82,13 @@ with gr.Blocks(css=css) as demo:
82
  def on_submit(image):
83
  original_image = image.copy()
84
 
 
85
  h, w = image.shape[:2]
86
 
87
- # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
88
- # image = transform({'image': image})['image']
89
- # image = torch.from_numpy(image).unsqueeze(0).to(DEVICE)
90
-
91
  image = np.asarray(image, dtype=np.float32) / 255.0
92
  image = torch.from_numpy(image.transpose((2, 0, 1)))
93
  image = Normalize(mean=[0.485, 0.456, 0.406], std=[
94
  0.229, 0.224, 0.225])(image)
95
- # image = torch.from_numpy(image).unsqueeze(0)
96
  with torch.no_grad():
97
  image = torch.autograd.Variable(image.unsqueeze(0))
98
  print("== Processing image")
@@ -106,19 +102,12 @@ with gr.Blocks(css=css) as demo:
106
  # Convert the PyTorch tensor to a NumPy array and squeeze
107
  pred_depth = pred_depth.cpu().numpy().squeeze()
108
 
109
- # Convert to uint8 if necessary for the colormap
110
- pred_output_depth = pred_depth.astype(np.uint8)
111
-
112
- # Apply color map
113
- output_image = cv2.applyColorMap(
114
- pred_output_depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
115
-
116
  # Continue with your file saving operations
117
  tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
118
  # cv2.imwrite(tmp.name, output_image)
119
  plt.imsave(tmp.name, pred_depth, cmap='jet')
120
 
121
- return [(original_image, output_image), tmp.name]
122
 
123
  submit.click(on_submit, inputs=[input_image], outputs=[
124
  depth_image_slider, raw_file])
 
82
  def on_submit(image):
83
  original_image = image.copy()
84
 
85
+ # This is for resizing the image to 518x518
86
  h, w = image.shape[:2]
87
 
 
 
 
 
88
  image = np.asarray(image, dtype=np.float32) / 255.0
89
  image = torch.from_numpy(image.transpose((2, 0, 1)))
90
  image = Normalize(mean=[0.485, 0.456, 0.406], std=[
91
  0.229, 0.224, 0.225])(image)
 
92
  with torch.no_grad():
93
  image = torch.autograd.Variable(image.unsqueeze(0))
94
  print("== Processing image")
 
102
  # Convert the PyTorch tensor to a NumPy array and squeeze
103
  pred_depth = pred_depth.cpu().numpy().squeeze()
104
 
 
 
 
 
 
 
 
105
  # Continue with your file saving operations
106
  tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
107
  # cv2.imwrite(tmp.name, output_image)
108
  plt.imsave(tmp.name, pred_depth, cmap='jet')
109
 
110
+ return [(original_image, tmp.name), tmp.name]
111
 
112
  submit.click(on_submit, inputs=[input_image], outputs=[
113
  depth_image_slider, raw_file])