|
from transformers import pipeline |
|
from langchain_cohere import ChatCohere |
|
from langchain_core.messages import HumanMessage, SystemMessage |
|
from langchain_core.output_parsers import StrOutputParser |
|
import gradio as gr |
|
|
|
llm = ChatCohere(model='command-r') |
|
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base") |
|
parser = StrOutputParser() |
|
|
|
def getting_prompt(doclist,spkmsg): |
|
print(spkmsg) |
|
recog_text = pipe(spkmsg) |
|
messages = [ |
|
SystemMessage(content='You are A helpful AI assistant and will provide truthful information from the context and your knowledge if you are prompted.'), |
|
HumanMessage(content=recog_text['text']), |
|
] |
|
chain = llm | parser |
|
response = chain.invoke(messages) |
|
return response |
|
|
|
demo = gr.Interface(getting_prompt,['file',gr.Audio(sources="microphone",type='filepath')],'text') |
|
demo.launch(debug=True) |
|
|