Spaces:
Running
Running
Alfarizky Oscandar
commited on
Commit
·
c7ac715
1
Parent(s):
01bc8b4
initial commit
Browse files- app.py +58 -0
- naive_bayes.joblib +3 -0
- requirements.txt +4 -0
- vectorizer.joblib +3 -0
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Muat model dan vectorizer
|
6 |
+
print("Memuat model dan vectorizer...")
|
7 |
+
vectorizer = joblib.load('vectorizer.joblib') # Muat vectorizer
|
8 |
+
nb_model = joblib.load('naive_bayes.joblib') # Muat model Naive Bayes
|
9 |
+
print("Model dan vectorizer berhasil dimuat.")
|
10 |
+
|
11 |
+
# Fungsi prediksi
|
12 |
+
def predict_text(title, content):
|
13 |
+
try:
|
14 |
+
# Transform teks menggunakan vectorizer yang sama
|
15 |
+
title_vector = vectorizer.transform([title])
|
16 |
+
content_vector = vectorizer.transform([content])
|
17 |
+
|
18 |
+
# Gabungkan fitur
|
19 |
+
X_new = np.hstack((title_vector.toarray(), content_vector.toarray()))
|
20 |
+
|
21 |
+
# Prediksi menggunakan model Naive Bayes
|
22 |
+
prediction = nb_model.predict(X_new) # Prediksi kelas (0 atau 1)
|
23 |
+
probability = nb_model.predict_proba(X_new) # Probabilitas untuk setiap kelas
|
24 |
+
|
25 |
+
# Format output
|
26 |
+
predicted_class = int(prediction[0]) # Kelas yang diprediksi (0 atau 1)
|
27 |
+
probability_fakta = float(probability[0][0] * 100) # Probabilitas fakta (kelas 0)
|
28 |
+
probability_hoaks = float(probability[0][1] * 100) # Probabilitas hoaks (kelas 1)
|
29 |
+
|
30 |
+
# Cetak output (untuk debugging)
|
31 |
+
print(f"Kelas yang diprediksi: {predicted_class}")
|
32 |
+
print(f"Probabilitas fakta: {probability_fakta:.2f}%")
|
33 |
+
print(f"Probabilitas hoaks: {probability_hoaks:.2f}%")
|
34 |
+
|
35 |
+
return predicted_class, probability_fakta, probability_hoaks
|
36 |
+
except Exception as e:
|
37 |
+
print("Error:", str(e))
|
38 |
+
return -1, 0.0, 0.0 # Nilai default jika terjadi error
|
39 |
+
|
40 |
+
# Buat antarmuka Gradio
|
41 |
+
demo = gr.Interface(
|
42 |
+
fn=predict_text, # Fungsi prediksi
|
43 |
+
inputs=[
|
44 |
+
gr.Textbox(label="Judul Berita"), # Input judul
|
45 |
+
gr.Textbox(label="Isi Berita") # Input isi
|
46 |
+
],
|
47 |
+
outputs=[
|
48 |
+
gr.Textbox(label="Kelas yang Diprediksi"), # Output kelas
|
49 |
+
gr.Textbox(label="Probabilitas Fakta"), # Output probabilitas fakta
|
50 |
+
gr.Textbox(label="Probabilitas Hoaks") # Output probabilitas hoaks
|
51 |
+
],
|
52 |
+
title="Deteksi Hoaks dengan Naive Bayes",
|
53 |
+
description="Masukkan judul dan isi berita untuk memprediksi apakah berita tersebut hoaks atau fakta."
|
54 |
+
)
|
55 |
+
|
56 |
+
# Jalankan aplikasi
|
57 |
+
print("Menjalankan aplikasi...")
|
58 |
+
demo.launch()
|
naive_bayes.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5498bf4769f3c5722be188db678a62cd3180e26afa65e8587802dbc3e8a24c1d
|
3 |
+
size 64791
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
scikit-learn
|
3 |
+
numpy
|
4 |
+
joblib
|
vectorizer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b634f3fd87f5c5b76b924097e29fecced4eac04d5f54089b42cfdd83f998234
|
3 |
+
size 71152
|