virtex-redcaps / model.py
kdexd's picture
Black + isort, remove unused virtx files.
8d0e872
raw
history blame
6.22 kB
import os
import json
import glob
import random
import torch
import torchvision
import streamlit as st
import wordsegment as ws
from PIL import Image
from huggingface_hub import hf_hub_url, cached_download
from virtex.config import Config
from virtex.factories import TokenizerFactory, PretrainingModelFactory
from virtex.utils.checkpointing import CheckpointManager
CONFIG_PATH = "config.yaml"
MODEL_PATH = "checkpoint_last5.pth"
VALID_SUBREDDITS_PATH = "subreddit_list.json"
SAMPLES_PATH = "./samples/*.jpg"
class ImageLoader:
def __init__(self):
self.image_transform = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.Normalize(
(0.485, 0.456, 0.406), (0.229, 0.224, 0.225)
),
]
)
self.show_size = 500
def load(self, im_path):
im = torch.FloatTensor(self.image_transform(Image.open(im_path))).unsqueeze(0)
return {"image": im}
def raw_load(self, im_path):
im = torch.FloatTensor(Image.open(im_path))
return {"image": im}
def transform(self, image):
im = torch.FloatTensor(self.image_transform(image)).unsqueeze(0)
return {"image": im}
def text_transform(self, text):
# at present just lowercasing:
return text.lower()
def show_resize(self, image):
# ugh we need to do this manually cuz this is pytorch==0.8 not 1.9 lol
image = torchvision.transforms.functional.to_tensor(image)
x, y = image.shape[-2:]
ratio = float(self.show_size / max((x, y)))
image = torchvision.transforms.functional.resize(
image, [int(x * ratio), int(y * ratio)]
)
return torchvision.transforms.functional.to_pil_image(image)
class VirTexModel:
def __init__(self):
self.config = Config(CONFIG_PATH)
ws.load()
self.device = "cpu"
self.tokenizer = TokenizerFactory.from_config(self.config)
self.model = PretrainingModelFactory.from_config(self.config).to(self.device)
CheckpointManager(model=self.model).load(MODEL_PATH)
self.model.eval()
self.valid_subs = json.load(open(VALID_SUBREDDITS_PATH))
def predict(self, image_dict, sub_prompt=None, prompt=""):
if sub_prompt is None:
subreddit_tokens = torch.tensor(
[self.model.sos_index], device=self.device
).long()
else:
subreddit_tokens = " ".join(ws.segment(ws.clean(sub_prompt)))
subreddit_tokens = (
[self.model.sos_index]
+ self.tokenizer.encode(subreddit_tokens)
+ [self.tokenizer.token_to_id("[SEP]")]
)
subreddit_tokens = torch.tensor(subreddit_tokens, device=self.device).long()
if prompt is not "":
# at present prompts without subreddits will break without this change
# TODO FIX
cap_tokens = self.tokenizer.encode(prompt)
cap_tokens = torch.tensor(cap_tokens, device=self.device).long()
subreddit_tokens = (
subreddit_tokens
if sub_prompt is not None
else torch.tensor(
(
[self.model.sos_index]
+ self.tokenizer.encode("pics")
+ [self.tokenizer.token_to_id("[SEP]")]
),
device=self.device,
).long()
)
subreddit_tokens = torch.cat([subreddit_tokens, cap_tokens])
is_valid_subreddit = False
subreddit, rest_of_caption = "", ""
image_dict["decode_prompt"] = subreddit_tokens
while not is_valid_subreddit:
with torch.no_grad():
caption = self.model(image_dict)["predictions"][0].tolist()
if self.tokenizer.token_to_id("[SEP]") in caption:
sep_index = caption.index(self.tokenizer.token_to_id("[SEP]"))
caption[sep_index] = self.tokenizer.token_to_id("://")
caption = self.tokenizer.decode(caption)
if "://" in caption:
subreddit, rest_of_caption = caption.split("://")
subreddit = "".join(subreddit.split())
rest_of_caption = rest_of_caption.strip()
else:
subreddit, rest_of_caption = "", caption.strip()
# split prompt for coloring:
if prompt is not "":
_, rest_of_caption = caption.split(prompt.strip())
is_valid_subreddit = subreddit in self.valid_subs
return subreddit, rest_of_caption
def download_files():
# download model files
download_files = [CONFIG_PATH, MODEL_PATH, VALID_SUBREDDITS_PATH]
for f in download_files:
fp = cached_download(hf_hub_url("zamborg/redcaps", filename=f))
os.system(f"cp {fp} ./{f}")
def get_samples():
return glob.glob(SAMPLES_PATH)
def get_rand_idx(samples):
return random.randint(0, len(samples) - 1)
@st.cache(allow_output_mutation=True) # allow mutation to update nucleus size
def create_objects():
sample_images = get_samples()
virtexModel = VirTexModel()
imageLoader = ImageLoader()
valid_subs = json.load(open(VALID_SUBREDDITS_PATH))
valid_subs.insert(0, None)
return virtexModel, imageLoader, sample_images, valid_subs
footer = """<style>
a:link , a:visited{
color: blue;
background-color: transparent;
text-decoration: underline;
}
a:hover, a:active {
color: red;
background-color: transparent;
text-decoration: underline;
}
.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: white;
color: black;
text-align: center;
}
</style>
<div class="footer">
<p>
*Please note that this model was explicitly not trained on images of people, and as a result is not designed to caption images with humans.
This demo accompanies our paper RedCaps.
Created by Karan Desai, Gaurav Kaul, Zubin Aysola, Justin Johnson
</p>
</div>
"""