Spaces:
Runtime error
Runtime error
import os | |
import json | |
import glob | |
import random | |
import torch | |
import torchvision | |
import streamlit as st | |
import wordsegment as ws | |
from PIL import Image | |
from huggingface_hub import hf_hub_url, cached_download | |
from virtex.config import Config | |
from virtex.factories import TokenizerFactory, PretrainingModelFactory | |
from virtex.utils.checkpointing import CheckpointManager | |
CONFIG_PATH = "config.yaml" | |
MODEL_PATH = "checkpoint_last5.pth" | |
VALID_SUBREDDITS_PATH = "subreddit_list.json" | |
SAMPLES_PATH = "./samples/*.jpg" | |
class ImageLoader: | |
def __init__(self): | |
self.image_transform = torchvision.transforms.Compose( | |
[ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Resize(256), | |
torchvision.transforms.CenterCrop(224), | |
torchvision.transforms.Normalize( | |
(0.485, 0.456, 0.406), (0.229, 0.224, 0.225) | |
), | |
] | |
) | |
self.show_size = 500 | |
def load(self, im_path): | |
im = torch.FloatTensor(self.image_transform(Image.open(im_path))).unsqueeze(0) | |
return {"image": im} | |
def raw_load(self, im_path): | |
im = torch.FloatTensor(Image.open(im_path)) | |
return {"image": im} | |
def transform(self, image): | |
im = torch.FloatTensor(self.image_transform(image)).unsqueeze(0) | |
return {"image": im} | |
def text_transform(self, text): | |
# at present just lowercasing: | |
return text.lower() | |
def show_resize(self, image): | |
# ugh we need to do this manually cuz this is pytorch==0.8 not 1.9 lol | |
image = torchvision.transforms.functional.to_tensor(image) | |
x, y = image.shape[-2:] | |
ratio = float(self.show_size / max((x, y))) | |
image = torchvision.transforms.functional.resize( | |
image, [int(x * ratio), int(y * ratio)] | |
) | |
return torchvision.transforms.functional.to_pil_image(image) | |
class VirTexModel: | |
def __init__(self): | |
self.config = Config(CONFIG_PATH) | |
ws.load() | |
self.device = "cpu" | |
self.tokenizer = TokenizerFactory.from_config(self.config) | |
self.model = PretrainingModelFactory.from_config(self.config).to(self.device) | |
CheckpointManager(model=self.model).load(MODEL_PATH) | |
self.model.eval() | |
self.valid_subs = json.load(open(VALID_SUBREDDITS_PATH)) | |
def predict(self, image_dict, sub_prompt=None, prompt=""): | |
if sub_prompt is None: | |
subreddit_tokens = torch.tensor( | |
[self.model.sos_index], device=self.device | |
).long() | |
else: | |
subreddit_tokens = " ".join(ws.segment(ws.clean(sub_prompt))) | |
subreddit_tokens = ( | |
[self.model.sos_index] | |
+ self.tokenizer.encode(subreddit_tokens) | |
+ [self.tokenizer.token_to_id("[SEP]")] | |
) | |
subreddit_tokens = torch.tensor(subreddit_tokens, device=self.device).long() | |
if prompt != "": | |
# at present prompts without subreddits will break without this change | |
# TODO FIX | |
cap_tokens = self.tokenizer.encode(prompt) | |
cap_tokens = torch.tensor(cap_tokens, device=self.device).long() | |
subreddit_tokens = ( | |
subreddit_tokens | |
if sub_prompt is not None | |
else torch.tensor( | |
( | |
[self.model.sos_index] | |
+ self.tokenizer.encode("pics") | |
+ [self.tokenizer.token_to_id("[SEP]")] | |
), | |
device=self.device, | |
).long() | |
) | |
subreddit_tokens = torch.cat([subreddit_tokens, cap_tokens]) | |
is_valid_subreddit = False | |
subreddit, rest_of_caption = "", "" | |
image_dict["decode_prompt"] = subreddit_tokens | |
while not is_valid_subreddit: | |
with torch.no_grad(): | |
caption = self.model(image_dict)["predictions"][0].tolist() | |
if self.tokenizer.token_to_id("[SEP]") in caption: | |
sep_index = caption.index(self.tokenizer.token_to_id("[SEP]")) | |
caption[sep_index] = self.tokenizer.token_to_id("://") | |
caption = self.tokenizer.decode(caption) | |
if "://" in caption: | |
subreddit, rest_of_caption = caption.split("://") | |
subreddit = "".join(subreddit.split()) | |
rest_of_caption = rest_of_caption.strip() | |
else: | |
subreddit, rest_of_caption = "", caption.strip() | |
# split prompt for coloring: | |
if prompt != "": | |
_, rest_of_caption = caption.split(prompt.strip()) | |
is_valid_subreddit = subreddit in self.valid_subs | |
return subreddit, rest_of_caption | |
def download_files(): | |
# download model files | |
download_files = [CONFIG_PATH, MODEL_PATH, VALID_SUBREDDITS_PATH] | |
for f in download_files: | |
fp = cached_download(hf_hub_url("zamborg/redcaps", filename=f)) | |
os.system(f"cp {fp} ./{f}") | |
def get_samples(): | |
return glob.glob(SAMPLES_PATH) | |
def get_rand_idx(samples): | |
return random.randint(0, len(samples) - 1) | |
# allow mutation to update nucleus size | |
def create_objects(): | |
sample_images = get_samples() | |
virtexModel = VirTexModel() | |
imageLoader = ImageLoader() | |
valid_subs = json.load(open(VALID_SUBREDDITS_PATH)) | |
valid_subs.insert(0, None) | |
return virtexModel, imageLoader, sample_images, valid_subs | |
footer = """<style> | |
a:link , a:visited{ | |
color: blue; | |
background-color: transparent; | |
text-decoration: underline; | |
} | |
a:hover, a:active { | |
color: red; | |
background-color: transparent; | |
text-decoration: underline; | |
} | |
.footer { | |
position: fixed; | |
left: 0; | |
bottom: 0; | |
width: 100%; | |
background-color: white; | |
color: black; | |
text-align: center; | |
} | |
</style> | |
<div class="footer"> | |
<p> | |
*Please note that this model was explicitly not trained on images of people, and as a result is not designed to caption images with humans. | |
This demo accompanies our paper RedCaps. | |
Created by Karan Desai, Gaurav Kaul, Zubin Aysola, Justin Johnson | |
</p> | |
</div> | |
""" | |