chat-llm / langchat.py
dipta007's picture
added chat, langchat
ebab1a2
import os
os.environ["HF_HOME"] = "/scratch/sroydip1/cache/hf/"
os.environ["HUGGINGFACEHUB_API_TOKEN"] = ""
# import torch
import pickle
import torch
import streamlit as st
from transformers import Conversation, pipeline
from upload import get_file, upload_file
from utils import clear_uploader, undo, restart
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceHub
share_keys = ["messages", "model_name"]
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.2",
"google/flan-t5-small",
"google/flan-t5-base",
"google/flan-t5-large",
"google/flan-t5-xl",
"google/flan-t5-xxl",
]
default_model = "mistralai/Mistral-7B-Instruct-v0.2"
# default_model = "meta-llama/Llama-2-7b-chat-hf"
st.set_page_config(
page_title="LLM",
page_icon="πŸ“š",
)
if "model_name" not in st.session_state:
st.session_state.model_name = default_model
template = """You are a friendly chatbot engaging in a conversation with a human.
Previous conversation:
{chat_history}
New human question: {question}
Response:"""
def get_pipeline(model_name):
llm = HuggingFaceHub(
repo_id=model_name,
task="text-generation",
model_kwargs={
"max_new_tokens": 512,
"top_k": 30,
"temperature": 0.1,
"repetition_penalty": 1.03,
},
)
return llm
chatbot = get_pipeline(st.session_state.model_name)
memory = ConversationBufferMemory(memory_key="chat_history")
prompt_template = PromptTemplate.from_template(template)
conversation = LLMChain(llm=chatbot, prompt=prompt_template, verbose=True, memory=memory)
if "messages" not in st.session_state:
st.session_state.messages = []
if len(st.session_state.messages) == 0 and "id" in st.query_params:
with st.spinner("Loading chat..."):
id = st.query_params["id"]
data = get_file(id)
obj = pickle.loads(data)
for k, v in obj.items():
st.session_state[k] = v
def share():
obj = {}
for k in share_keys:
if k in st.session_state:
obj[k] = st.session_state[k]
data = pickle.dumps(obj)
id = upload_file(data)
url = f"https://umbc-nlp-chat-llm.hf.space/?id={id}"
st.markdown(f"[share](/?id={id})")
st.success(f"Share URL: {url}")
with st.sidebar:
st.title(":blue[LLM Only]")
st.subheader("Model")
model_name = st.selectbox(
"Model", MODELS, index=MODELS.index(st.session_state.model_name)
)
if st.button("Share", use_container_width=True):
share()
cols = st.columns(2)
with cols[0]:
if st.button("Restart", type="primary", use_container_width=True):
restart()
with cols[1]:
if st.button("Undo", use_container_width=True):
undo()
append = st.checkbox("Append to previous message", value=False)
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def push_message(role, content):
message = {"role": role, "content": content}
st.session_state.messages.append(message)
return message
if prompt := st.chat_input("Type a message", key="chat_input"):
push_message("user", prompt)
with st.chat_message("user"):
st.markdown(prompt)
if not append:
with st.chat_message("assistant"):
print(conversation)
with st.spinner("Generating response..."):
response = conversation({"question": prompt})
print(response)
response = response["text"]
st.write(response)
push_message("assistant", response)
clear_uploader()