Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import spacy | |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer | |
import PyPDF2 | |
import docx | |
import io | |
st.set_page_config(layout="wide") | |
# Function to read text from uploaded file | |
def read_file(file): | |
if file.type == "text/plain": | |
return file.getvalue().decode("utf-8") | |
elif file.type == "application/pdf": | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue())) | |
return " ".join(page.extract_text() for page in pdf_reader.pages) | |
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
doc = docx.Document(io.BytesIO(file.getvalue())) | |
return " ".join(paragraph.text for paragraph in doc.paragraphs) | |
else: | |
st.error("Unsupported file type") | |
return None | |
st.title("Turkish NER Models Testing") | |
model_list = [ | |
'girayyagmur/bert-base-turkish-ner-cased', | |
'savasy/bert-base-turkish-ner-cased', | |
'xlm-roberta-large-finetuned-conll03-english', | |
'asahi417/tner-xlm-roberta-base-ontonotes5' | |
] | |
st.sidebar.header("Select NER Model") | |
model_checkpoint = st.sidebar.radio("", model_list) | |
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/") | |
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.") | |
# Determine aggregation strategy | |
aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", | |
"xlm-roberta-large-finetuned-conll03-english", | |
"asahi417/tner-xlm-roberta-base-ontonotes5"] else "first" | |
st.subheader("Select Text Input Method") | |
input_method = st.radio("", ('Write or Paste New Text', 'Upload File')) | |
if input_method == "Write or Paste New Text": | |
input_text = st.text_area('Write or Paste Text Below', value="", height=128) | |
else: | |
uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"]) | |
if uploaded_file is not None: | |
input_text = read_file(uploaded_file) | |
if input_text: | |
st.text_area("Extracted Text", input_text, height=128) | |
else: | |
input_text = "" | |
def setModel(model_checkpoint, aggregation): | |
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation) | |
def entity_comb(output): | |
output_comb = [] | |
for ind, entity in enumerate(output): | |
if ind == 0: | |
output_comb.append(entity) | |
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]: | |
output_comb[-1]["word"] += output[ind]["word"] | |
output_comb[-1]["end"] = output[ind]["end"] | |
else: | |
output_comb.append(entity) | |
return output_comb | |
Run_Button = st.button("Run") | |
if Run_Button and input_text: | |
ner_pipeline = setModel(model_checkpoint, aggregation) | |
output = ner_pipeline(input_text) | |
output_comb = entity_comb(output) | |
df = pd.DataFrame.from_dict(output_comb) | |
cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end'] | |
df_final = df[cols_to_keep] | |
st.subheader("Recognized Entities") | |
st.dataframe(df_final) | |
# Spacy display logic | |
spacy_display = {"ents": [], "text": input_text, "title": None} | |
for entity in output_comb: | |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]}) | |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True) | |
st.write(html, unsafe_allow_html=True) | |