Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import spacy | |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer | |
import PyPDF2 | |
import docx | |
import io | |
st.set_page_config(layout="wide") | |
# Function to read text from uploaded file | |
def read_file(file): | |
if file.type == "text/plain": | |
return file.getvalue().decode("utf-8") | |
elif file.type == "application/pdf": | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue())) | |
return " ".join(page.extract_text() for page in pdf_reader.pages) | |
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
doc = docx.Document(io.BytesIO(file.getvalue())) | |
return " ".join(paragraph.text for paragraph in doc.paragraphs) | |
else: | |
st.error("Unsupported file type") | |
return None | |
# Rest of your code remains the same | |
example_list = [ | |
"Mustafa Kemal Atatürk 1919 yılında Samsun'a çıktı.", | |
"""Mustafa Kemal Atatürk, Türk asker, devlet adamı ve Türkiye Cumhuriyeti'nin kurucusudur. | |
# ... (rest of the example text) | |
""" | |
] | |
st.title("Demo for Turkish NER Models") | |
model_list = [ | |
'akdeniz27/bert-base-turkish-cased-ner', | |
'akdeniz27/convbert-base-turkish-cased-ner', | |
'girayyagmur/bert-base-turkish-ner-cased', | |
'FacebookAI/xlm-roberta-large', | |
'savasy/bert-base-turkish-ner-cased', | |
'xlm-roberta-large-finetuned-conll03-english', | |
'asahi417/tner-xlm-roberta-base-ontonotes5' | |
] | |
st.sidebar.header("Select NER Model") | |
model_checkpoint = st.sidebar.radio("", model_list) | |
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/") | |
st.sidebar.write("") | |
if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"]: | |
aggregation = "simple" | |
if model_checkpoint != "akdeniz27/xlm-roberta-base-turkish-ner": | |
st.sidebar.write("The selected NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta pretrained language model.") | |
else: | |
aggregation = "first" | |
st.subheader("Select Text Input Method") | |
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text', 'Upload File')) | |
if input_method == 'Select from Examples': | |
selected_text = st.selectbox('Select Text from List', example_list, index=0, key=1) | |
input_text = st.text_area("Selected Text", selected_text, height=128, max_chars=None, key=2) | |
elif input_method == "Write or Paste New Text": | |
input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None, key=2) | |
else: | |
uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"]) | |
if uploaded_file is not None: | |
input_text = read_file(uploaded_file) | |
if input_text: | |
st.text_area("Extracted Text", input_text, height=128, max_chars=None, key=2) | |
else: | |
input_text = "" | |
# Rest of your functions (setModel, get_html, entity_comb) remain the same | |
def setModel(model_checkpoint, aggregation): | |
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation) | |
def get_html(html: str): | |
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>""" | |
html = html.replace("\n", " ") | |
return WRAPPER.format(html) | |
def entity_comb(output): | |
output_comb = [] | |
for ind, entity in enumerate(output): | |
if ind == 0: | |
output_comb.append(entity) | |
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]: | |
output_comb[-1]["word"] = output_comb[-1]["word"] + output[ind]["word"] | |
output_comb[-1]["end"] = output[ind]["end"] | |
else: | |
output_comb.append(entity) | |
return output_comb | |
Run_Button = st.button("Run", key=None) | |
if Run_Button and input_text != "": | |
# Your existing processing code remains the same | |
ner_pipeline = setModel(model_checkpoint, aggregation) | |
output = ner_pipeline(input_text) | |
output_comb = entity_comb(output) | |
df = pd.DataFrame.from_dict(output_comb) | |
cols_to_keep = ['word','entity_group','score','start','end'] | |
df_final = df[cols_to_keep] | |
st.subheader("Recognized Entities") | |
st.dataframe(df_final) | |
st.subheader("Spacy Style Display") | |
spacy_display = {} | |
spacy_display["ents"] = [] | |
spacy_display["text"] = input_text | |
spacy_display["title"] = None | |
for entity in output_comb: | |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]}) | |
tner_entity_list = ["person", "group", "facility", "organization", "geopolitical area", "location", "product", "event", "work of art", "law", "language", "date", "time", "percent", "money", "quantity", "ordinal number", "cardinal number"] | |
spacy_entity_list = ["PERSON", "NORP", "FAC", "ORG", "GPE", "LOC", "PRODUCT", "EVENT", "WORK_OF_ART", "LAW", "LANGUAGE", "DATE", "TIME", "PERCENT", "MONEY", "QUANTITY", "ORDINAL", "CARDINAL", "MISC"] | |
for ent in spacy_display["ents"]: | |
if model_checkpoint == "asahi417/tner-xlm-roberta-base-ontonotes5": | |
ent["label"] = spacy_entity_list[tner_entity_list.index(ent["label"])] | |
else: | |
if ent["label"] == "PER": ent["label"] = "PERSON" | |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True, options={"ents": spacy_entity_list}) | |
style = "<style>mark.entity { display: inline-block }</style>" | |
st.write(f"{style}{get_html(html)}", unsafe_allow_html=True) |