Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,71 +2,87 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
-
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
-
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
#
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-
|
13 |
-
|
14 |
-
#
|
15 |
-
processor = SpeechT5Processor.from_pretrained("
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
speech = model.generate_speech(inputs["input_ids"].to(device),
|
32 |
return speech.cpu()
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
synthesised_speech = synthesise(translated_text)
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
return 16000, synthesised_speech
|
40 |
|
41 |
-
|
42 |
-
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
-
|
47 |
-

|
48 |
"""
|
49 |
|
50 |
demo = gr.Blocks()
|
51 |
|
52 |
-
mic_translate = gr.Interface(
|
53 |
-
fn=speech_to_speech_translation,
|
54 |
-
inputs=gr.Audio(source="microphone", type="filepath"),
|
55 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
56 |
-
title=title,
|
57 |
-
description=description,
|
58 |
-
)
|
59 |
-
|
60 |
-
file_translate = gr.Interface(
|
61 |
-
fn=speech_to_speech_translation,
|
62 |
-
inputs=gr.Audio(source="upload", type="filepath"),
|
63 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./example.wav"]],
|
65 |
-
title=title,
|
66 |
-
description=description,
|
67 |
-
)
|
68 |
-
|
69 |
with demo:
|
70 |
-
gr.
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
|
|
5 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
6 |
|
|
|
7 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
+
# Load Whisper large-v2 model for multilingual speech translation
|
10 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
|
11 |
+
|
12 |
+
# Load MMS TTS model for multilingual text-to-speech
|
13 |
+
processor = SpeechT5Processor.from_pretrained("facebook/mms-tts-eng")
|
14 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("facebook/mms-tts-eng").to(device)
|
15 |
+
vocoder = SpeechT5HifiGan.from_pretrained("facebook/mms-tts-eng").to(device)
|
16 |
+
|
17 |
+
# Define supported languages
|
18 |
+
LANGUAGES = {
|
19 |
+
"French": "fra", "German": "deu", "Spanish": "spa", "Italian": "ita",
|
20 |
+
"Portuguese": "por", "Dutch": "nld", "Russian": "rus", "Chinese": "cmn",
|
21 |
+
"Japanese": "jpn", "Korean": "kor"
|
22 |
+
}
|
23 |
+
|
24 |
+
def translate(audio, source_lang, target_lang):
|
25 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={
|
26 |
+
"task": "transcribe",
|
27 |
+
"language": source_lang,
|
28 |
+
})
|
29 |
+
transcription = outputs["text"]
|
30 |
+
|
31 |
+
# Use Whisper for translation
|
32 |
+
translation = asr_pipe(transcription, max_new_tokens=256, generate_kwargs={
|
33 |
+
"task": "translate",
|
34 |
+
"language": target_lang,
|
35 |
+
})["text"]
|
36 |
+
|
37 |
+
return translation
|
38 |
+
|
39 |
+
def synthesise(text, target_lang):
|
40 |
inputs = processor(text=text, return_tensors="pt")
|
41 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), vocoder=vocoder, language=target_lang)
|
42 |
return speech.cpu()
|
43 |
|
44 |
+
def speech_to_speech_translation(audio, source_lang, target_lang):
|
45 |
+
translated_text = translate(audio, source_lang, target_lang)
|
46 |
+
synthesised_speech = synthesise(translated_text, target_lang)
|
|
|
47 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
48 |
return 16000, synthesised_speech
|
49 |
|
50 |
+
title = "Multilingual Speech-to-Speech Translation"
|
|
|
51 |
description = """
|
52 |
+
Demo for multilingual speech-to-speech translation (STST), mapping from source speech in any supported language to target speech in any other supported language.
|
|
|
|
|
|
|
53 |
"""
|
54 |
|
55 |
demo = gr.Blocks()
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
with demo:
|
58 |
+
gr.Markdown(f"# {title}")
|
59 |
+
gr.Markdown(description)
|
60 |
+
|
61 |
+
with gr.Row():
|
62 |
+
source_lang = gr.Dropdown(choices=list(LANGUAGES.keys()), label="Source Language")
|
63 |
+
target_lang = gr.Dropdown(choices=list(LANGUAGES.keys()), label="Target Language")
|
64 |
+
|
65 |
+
with gr.Tabs():
|
66 |
+
with gr.TabItem("Microphone"):
|
67 |
+
mic_input = gr.Audio(source="microphone", type="filepath")
|
68 |
+
mic_output = gr.Audio(label="Generated Speech", type="numpy")
|
69 |
+
mic_button = gr.Button("Translate")
|
70 |
+
|
71 |
+
with gr.TabItem("Audio File"):
|
72 |
+
file_input = gr.Audio(source="upload", type="filepath")
|
73 |
+
file_output = gr.Audio(label="Generated Speech", type="numpy")
|
74 |
+
file_button = gr.Button("Translate")
|
75 |
+
|
76 |
+
mic_button.click(
|
77 |
+
speech_to_speech_translation,
|
78 |
+
inputs=[mic_input, source_lang, target_lang],
|
79 |
+
outputs=mic_output
|
80 |
+
)
|
81 |
+
|
82 |
+
file_button.click(
|
83 |
+
speech_to_speech_translation,
|
84 |
+
inputs=[file_input, source_lang, target_lang],
|
85 |
+
outputs=file_output
|
86 |
+
)
|
87 |
+
|
88 |
+
demo.launch()
|