Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load the model and processor
|
6 |
+
processor = BlipProcessor.from_pretrained("umarigan/blip-image-captioning-base-chestxray-finetuned")
|
7 |
+
model = BlipForConditionalGeneration.from_pretrained("umarigan/blip-image-captioning-base-chestxray-finetuned")
|
8 |
+
|
9 |
+
# Define the prediction function
|
10 |
+
def generate_caption(image):
|
11 |
+
text = "a photography of"
|
12 |
+
inputs = processor(image, text, return_tensors="pt")
|
13 |
+
out = model.generate(**inputs)
|
14 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
15 |
+
return caption
|
16 |
+
|
17 |
+
# Example images from your Hugging Face Space
|
18 |
+
example_images = [
|
19 |
+
("image.jpg", "Example 1"),
|
20 |
+
("image1.jpg", "Example 2"),
|
21 |
+
("image2.jpg", "Example 3")
|
22 |
+
]
|
23 |
+
|
24 |
+
# Create the Gradio interface
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
gr.Markdown("# BLIP Image Captioning")
|
27 |
+
|
28 |
+
# Image input component with example images
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
image_input = gr.Image(type="pil", label="Upload an Image or Select an Example")
|
32 |
+
examples = gr.Examples(examples=example_images, inputs=image_input)
|
33 |
+
|
34 |
+
with gr.Column():
|
35 |
+
caption_output = gr.Textbox(label="Generated Caption")
|
36 |
+
|
37 |
+
# Generate button
|
38 |
+
generate_button = gr.Button("Generate Caption")
|
39 |
+
generate_button.click(fn=generate_caption, inputs=image_input, outputs=caption_output)
|
40 |
+
|
41 |
+
# Launch the app
|
42 |
+
demo.launch()
|