Spaces:
Sleeping
Sleeping
import streamlit as st | |
import joblib | |
import numpy as np | |
# Load the model from Hugging Face Model Hub (replace with your model's Hugging Face repository URL) | |
model = joblib.load('random_forest_model.pkl') # If model is uploaded directly in the Space, this works. | |
# Streamlit App Title | |
st.title("Power Prediction App") | |
st.subheader("Enter the values for Current (I) and Resistance (R) to predict Power (P)") | |
# Input fields for Current (I) and Resistance (R) | |
current = st.number_input("Current (I in Amps)", min_value=0.1, max_value=10.0, value=5.0, step=0.1) | |
resistance = st.number_input("Resistance (R in Ohms)", min_value=1.0, max_value=100.0, value=50.0, step=1.0) | |
# Button to make prediction | |
if st.button("Predict Power"): | |
# Predict the power using the trained model | |
prediction = model.predict([[current, resistance]]) | |
# Display the result | |
st.write(f"Predicted Power (P) for I = {current} A and R = {resistance} Ω is: {prediction[0]:.2f} Watts") | |