Update app.py
Browse files
app.py
CHANGED
@@ -69,7 +69,7 @@ def infer(
|
|
69 |
if controlnet_enabled and control_image:
|
70 |
controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
|
71 |
if model_id == "SD1.5 + lora Unet TextEncoder":
|
72 |
-
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-
|
73 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
|
74 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
|
75 |
elif model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
|
@@ -109,6 +109,7 @@ def infer(
|
|
109 |
controlnet_conditioning_scale=control_strength,
|
110 |
ip_adapter_image=ip_adapter_image,
|
111 |
).images[0]
|
|
|
112 |
if d_bckg:
|
113 |
image=remove(image)
|
114 |
|
@@ -158,12 +159,12 @@ with gr.Blocks(css=css) as demo:
|
|
158 |
minimum=0,
|
159 |
maximum=2,
|
160 |
step=0.05,
|
161 |
-
value=
|
162 |
)
|
163 |
with gr.Row():
|
164 |
d_bckg=gr.Checkbox(label="Delete Background", value=False)
|
165 |
ddim_use=gr.Checkbox(label="Enable DDIMScheduler", value=False)
|
166 |
-
distill_vae=gr.Checkbox(label="Use tiny VAE with distill model", value=
|
167 |
|
168 |
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
|
169 |
with gr.Row():
|
@@ -224,7 +225,7 @@ with gr.Blocks(css=css) as demo:
|
|
224 |
max_lines=1,
|
225 |
placeholder="Enter a negative prompt",
|
226 |
visible=True,
|
227 |
-
value="worst quality,
|
228 |
)
|
229 |
|
230 |
seed = gr.Slider(
|
@@ -232,10 +233,10 @@ with gr.Blocks(css=css) as demo:
|
|
232 |
minimum=0,
|
233 |
maximum=MAX_SEED,
|
234 |
step=1,
|
235 |
-
value=
|
236 |
)
|
237 |
|
238 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=
|
239 |
|
240 |
with gr.Row():
|
241 |
width = gr.Slider(
|
@@ -260,7 +261,7 @@ with gr.Blocks(css=css) as demo:
|
|
260 |
minimum=0.0,
|
261 |
maximum=10.0,
|
262 |
step=0.1,
|
263 |
-
value=7.
|
264 |
)
|
265 |
|
266 |
num_inference_steps = gr.Slider(
|
|
|
69 |
if controlnet_enabled and control_image:
|
70 |
controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
|
71 |
if model_id == "SD1.5 + lora Unet TextEncoder":
|
72 |
+
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-deeffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model)
|
73 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
|
74 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
|
75 |
elif model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
|
|
|
109 |
controlnet_conditioning_scale=control_strength,
|
110 |
ip_adapter_image=ip_adapter_image,
|
111 |
).images[0]
|
112 |
+
|
113 |
if d_bckg:
|
114 |
image=remove(image)
|
115 |
|
|
|
159 |
minimum=0,
|
160 |
maximum=2,
|
161 |
step=0.05,
|
162 |
+
value=0.85,
|
163 |
)
|
164 |
with gr.Row():
|
165 |
d_bckg=gr.Checkbox(label="Delete Background", value=False)
|
166 |
ddim_use=gr.Checkbox(label="Enable DDIMScheduler", value=False)
|
167 |
+
distill_vae=gr.Checkbox(label="Use tiny VAE with distill model", value=False)
|
168 |
|
169 |
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
|
170 |
with gr.Row():
|
|
|
225 |
max_lines=1,
|
226 |
placeholder="Enter a negative prompt",
|
227 |
visible=True,
|
228 |
+
value="worst quality,low quality, low res, blurry, distortion, jpeg artifacts, backround"
|
229 |
)
|
230 |
|
231 |
seed = gr.Slider(
|
|
|
233 |
minimum=0,
|
234 |
maximum=MAX_SEED,
|
235 |
step=1,
|
236 |
+
value=750242712,
|
237 |
)
|
238 |
|
239 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
240 |
|
241 |
with gr.Row():
|
242 |
width = gr.Slider(
|
|
|
261 |
minimum=0.0,
|
262 |
maximum=10.0,
|
263 |
step=0.1,
|
264 |
+
value=7.5,
|
265 |
)
|
266 |
|
267 |
num_inference_steps = gr.Slider(
|