um235 commited on
Commit
89a2b44
·
verified ·
1 Parent(s): ca7d365

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -69,7 +69,7 @@ def infer(
69
  if controlnet_enabled and control_image:
70
  controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
71
  if model_id == "SD1.5 + lora Unet TextEncoder":
72
- pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model)
73
  pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
74
  pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
75
  elif model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
@@ -109,6 +109,7 @@ def infer(
109
  controlnet_conditioning_scale=control_strength,
110
  ip_adapter_image=ip_adapter_image,
111
  ).images[0]
 
112
  if d_bckg:
113
  image=remove(image)
114
 
@@ -158,12 +159,12 @@ with gr.Blocks(css=css) as demo:
158
  minimum=0,
159
  maximum=2,
160
  step=0.05,
161
- value=1,
162
  )
163
  with gr.Row():
164
  d_bckg=gr.Checkbox(label="Delete Background", value=False)
165
  ddim_use=gr.Checkbox(label="Enable DDIMScheduler", value=False)
166
- distill_vae=gr.Checkbox(label="Use tiny VAE with distill model", value=True)
167
 
168
  # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
169
  with gr.Row():
@@ -224,7 +225,7 @@ with gr.Blocks(css=css) as demo:
224
  max_lines=1,
225
  placeholder="Enter a negative prompt",
226
  visible=True,
227
- value="worst quality, normal quality, low quality, low res, blurry, distortion, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts,"
228
  )
229
 
230
  seed = gr.Slider(
@@ -232,10 +233,10 @@ with gr.Blocks(css=css) as demo:
232
  minimum=0,
233
  maximum=MAX_SEED,
234
  step=1,
235
- value=235,
236
  )
237
 
238
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
239
 
240
  with gr.Row():
241
  width = gr.Slider(
@@ -260,7 +261,7 @@ with gr.Blocks(css=css) as demo:
260
  minimum=0.0,
261
  maximum=10.0,
262
  step=0.1,
263
- value=7.0,
264
  )
265
 
266
  num_inference_steps = gr.Slider(
 
69
  if controlnet_enabled and control_image:
70
  controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
71
  if model_id == "SD1.5 + lora Unet TextEncoder":
72
+ pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-deeffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model)
73
  pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
74
  pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
75
  elif model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
 
109
  controlnet_conditioning_scale=control_strength,
110
  ip_adapter_image=ip_adapter_image,
111
  ).images[0]
112
+
113
  if d_bckg:
114
  image=remove(image)
115
 
 
159
  minimum=0,
160
  maximum=2,
161
  step=0.05,
162
+ value=0.85,
163
  )
164
  with gr.Row():
165
  d_bckg=gr.Checkbox(label="Delete Background", value=False)
166
  ddim_use=gr.Checkbox(label="Enable DDIMScheduler", value=False)
167
+ distill_vae=gr.Checkbox(label="Use tiny VAE with distill model", value=False)
168
 
169
  # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
170
  with gr.Row():
 
225
  max_lines=1,
226
  placeholder="Enter a negative prompt",
227
  visible=True,
228
+ value="worst quality,low quality, low res, blurry, distortion, jpeg artifacts, backround"
229
  )
230
 
231
  seed = gr.Slider(
 
233
  minimum=0,
234
  maximum=MAX_SEED,
235
  step=1,
236
+ value=750242712,
237
  )
238
 
239
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
240
 
241
  with gr.Row():
242
  width = gr.Slider(
 
261
  minimum=0.0,
262
  maximum=10.0,
263
  step=0.1,
264
+ value=7.5,
265
  )
266
 
267
  num_inference_steps = gr.Slider(