Update app.py
Browse files
app.py
CHANGED
@@ -46,8 +46,8 @@ def infer(
|
|
46 |
pipe = None
|
47 |
if (model_id=="stable-diffusion-v1-5/stable-diffusion-v1-5 with lora with text encoder"):
|
48 |
pipe=DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
49 |
-
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/VanillaCat
|
50 |
-
pipe.text_encoder= PeftModel.from_pretrained(pipe.text_encoder,"um235/VanillaCat
|
51 |
elif (model_id=="stable-diffusion-v1-5/stable-diffusion-v1-5 without lora with text encoder"):
|
52 |
pipe=DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
53 |
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/cartoon_cat_stickers")
|
|
|
46 |
pipe = None
|
47 |
if (model_id=="stable-diffusion-v1-5/stable-diffusion-v1-5 with lora with text encoder"):
|
48 |
pipe=DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
49 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/VanillaCat",subfolder="unet")
|
50 |
+
pipe.text_encoder= PeftModel.from_pretrained(pipe.text_encoder,"um235/VanillaCat",subfolder="text_encoder")
|
51 |
elif (model_id=="stable-diffusion-v1-5/stable-diffusion-v1-5 without lora with text encoder"):
|
52 |
pipe=DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
53 |
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/cartoon_cat_stickers")
|