Update app.py
Browse files
app.py
CHANGED
@@ -69,13 +69,15 @@ def infer(
|
|
69 |
controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
|
70 |
if model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
|
71 |
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model)
|
|
|
|
|
72 |
else:
|
73 |
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model)
|
74 |
else:
|
75 |
if model_id == "SD1.5 + lora Unet TextEncoder":
|
76 |
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
77 |
-
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/
|
78 |
-
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/
|
79 |
elif model_id == "SD1.5 + lora Unet":
|
80 |
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
81 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/cartoon_cat_stickers")
|
|
|
69 |
controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
|
70 |
if model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
|
71 |
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model)
|
72 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
|
73 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
|
74 |
else:
|
75 |
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model)
|
76 |
else:
|
77 |
if model_id == "SD1.5 + lora Unet TextEncoder":
|
78 |
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
79 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
|
80 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
|
81 |
elif model_id == "SD1.5 + lora Unet":
|
82 |
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
83 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/cartoon_cat_stickers")
|