Update app.py
Browse files
app.py
CHANGED
@@ -34,6 +34,14 @@ def infer(
|
|
34 |
height,
|
35 |
guidance_scale,
|
36 |
num_inference_steps,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
progress=gr.Progress(track_tqdm=True),
|
38 |
):
|
39 |
if randomize_seed:
|
@@ -42,7 +50,9 @@ def infer(
|
|
42 |
generator = torch.Generator().manual_seed(seed)
|
43 |
|
44 |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
45 |
-
if (model_repo_id=="stable-diffusion-v1-5/stable-diffusion-v1-5"):
|
|
|
|
|
46 |
pipe = pipe.to(device)
|
47 |
|
48 |
image = pipe(
|
@@ -81,7 +91,14 @@ with gr.Blocks(css=css) as demo:
|
|
81 |
show_label=True,
|
82 |
placeholder="Enter model",
|
83 |
)
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
|
87 |
with gr.Row():
|
@@ -92,7 +109,45 @@ with gr.Blocks(css=css) as demo:
|
|
92 |
placeholder="Enter your prompt",
|
93 |
container=False,
|
94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
97 |
|
98 |
result = gr.Image(label="Result", show_label=False)
|
@@ -102,7 +157,7 @@ with gr.Blocks(css=css) as demo:
|
|
102 |
label="Negative prompt",
|
103 |
max_lines=1,
|
104 |
placeholder="Enter a negative prompt",
|
105 |
-
visible=
|
106 |
)
|
107 |
|
108 |
seed = gr.Slider(
|
@@ -163,6 +218,14 @@ with gr.Blocks(css=css) as demo:
|
|
163 |
height,
|
164 |
guidance_scale,
|
165 |
num_inference_steps,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
],
|
167 |
outputs=[result, seed],
|
168 |
)
|
|
|
34 |
height,
|
35 |
guidance_scale,
|
36 |
num_inference_steps,
|
37 |
+
lscale,
|
38 |
+
controlnet_enabled,
|
39 |
+
control_strength,
|
40 |
+
control_mode,
|
41 |
+
control_image,
|
42 |
+
ip_adapter_enabled,
|
43 |
+
ip_adapter_scale,
|
44 |
+
ip_adapter_image,
|
45 |
progress=gr.Progress(track_tqdm=True),
|
46 |
):
|
47 |
if randomize_seed:
|
|
|
50 |
generator = torch.Generator().manual_seed(seed)
|
51 |
|
52 |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
53 |
+
if (model_repo_id=="stable-diffusion-v1-5/stable-diffusion-v1-5"):
|
54 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/cartoon_cat_stickers")
|
55 |
+
pipe.scale_lora(lscale)
|
56 |
pipe = pipe.to(device)
|
57 |
|
58 |
image = pipe(
|
|
|
91 |
show_label=True,
|
92 |
placeholder="Enter model",
|
93 |
)
|
94 |
+
with gr.Row():
|
95 |
+
lscale = gr.Slider(
|
96 |
+
label="Lora scale",
|
97 |
+
minimum=0,
|
98 |
+
maximum=2,
|
99 |
+
step=0.05,
|
100 |
+
value=1, # Replace with defaults that work for your model
|
101 |
+
)
|
102 |
|
103 |
|
104 |
with gr.Row():
|
|
|
109 |
placeholder="Enter your prompt",
|
110 |
container=False,
|
111 |
)
|
112 |
+
with gr.Accordion("ControlNet Settings", open=False):
|
113 |
+
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
control_strength = gr.Slider(
|
117 |
+
label="ControlNet Strength",
|
118 |
+
minimum=0.0,
|
119 |
+
maximum=1.0,
|
120 |
+
step=0.05,
|
121 |
+
value=0.75,
|
122 |
+
visible=False,
|
123 |
+
)
|
124 |
+
|
125 |
+
control_mode = gr.Dropdown(
|
126 |
+
label="ControlNet Mode",
|
127 |
+
choices=["edge_detection", "pose_estimation", "depth_estimation"],
|
128 |
+
value="edge_detection",
|
129 |
+
visible=False,
|
130 |
+
)
|
131 |
|
132 |
+
control_image = gr.Image(label="ControlNet Image", type="pil", visible=False)
|
133 |
+
|
134 |
+
with gr.Accordion("IP-Adapter Settings", open=False):
|
135 |
+
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False)
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
ip_adapter_scale = gr.Slider(
|
139 |
+
label="IP-Adapter Scale",
|
140 |
+
minimum=0.0,
|
141 |
+
maximum=2.0,
|
142 |
+
step=0.05,
|
143 |
+
value=1.0,
|
144 |
+
visible=False,
|
145 |
+
)
|
146 |
+
|
147 |
+
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil", visible=False)
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
|
151 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
152 |
|
153 |
result = gr.Image(label="Result", show_label=False)
|
|
|
157 |
label="Negative prompt",
|
158 |
max_lines=1,
|
159 |
placeholder="Enter a negative prompt",
|
160 |
+
visible=True,
|
161 |
)
|
162 |
|
163 |
seed = gr.Slider(
|
|
|
218 |
height,
|
219 |
guidance_scale,
|
220 |
num_inference_steps,
|
221 |
+
lscale,
|
222 |
+
controlnet_enabled,
|
223 |
+
control_strength,
|
224 |
+
control_mode,
|
225 |
+
control_image,
|
226 |
+
ip_adapter_enabled,
|
227 |
+
ip_adapter_scale,
|
228 |
+
ip_adapter_image,
|
229 |
],
|
230 |
outputs=[result, seed],
|
231 |
)
|