Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
from peft import PeftModel, LoraConfig
|
5 |
-
|
6 |
-
# import spaces #[uncomment to use ZeroGPU]
|
7 |
from diffusers import DiffusionPipeline
|
8 |
import torch
|
9 |
|
@@ -16,6 +14,23 @@ else:
|
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
MAX_IMAGE_SIZE = 1024
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
21 |
def infer(
|
@@ -44,18 +59,25 @@ def infer(
|
|
44 |
generator = torch.Generator().manual_seed(seed)
|
45 |
|
46 |
pipe = None
|
47 |
-
if
|
48 |
-
pipe=DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
49 |
-
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/VanillaCat",subfolder="unet")
|
50 |
pipe.safety_checker = None
|
51 |
-
pipe.text_encoder= PeftModel.from_pretrained(pipe.text_encoder,"um235/VanillaCat",subfolder="text_encoder")
|
52 |
-
elif
|
53 |
-
pipe=DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
54 |
pipe.safety_checker = None
|
55 |
-
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/cartoon_cat_stickers")
|
56 |
else:
|
57 |
-
pipe=DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
58 |
pipe.safety_checker = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
pipe = pipe.to(device)
|
60 |
|
61 |
image = pipe(
|
@@ -66,7 +88,9 @@ def infer(
|
|
66 |
width=width,
|
67 |
height=height,
|
68 |
generator=generator,
|
69 |
-
cross_attention_kwargs={"scale": lscale}
|
|
|
|
|
70 |
).images[0]
|
71 |
|
72 |
return image, seed
|
@@ -86,40 +110,36 @@ css = """
|
|
86 |
"""
|
87 |
|
88 |
def update_controlnet_visibility(controlnet_enabled):
|
89 |
-
# Возвращаем два значения для обновления видимости control_strength и control_mode
|
90 |
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled)
|
91 |
|
92 |
def update_ip_adapter_visibility(ip_adapter_enabled):
|
93 |
-
# Возвращаем два значения для обновления видимости ip_adapter_scale и ip_adapter_image
|
94 |
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled)
|
95 |
|
96 |
|
97 |
-
|
98 |
with gr.Blocks(css=css) as demo:
|
99 |
with gr.Column(elem_id="col-container"):
|
100 |
gr.Markdown(" # UM235 DIFFUSION Space")
|
101 |
|
102 |
model_id_input = gr.Dropdown(
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
)
|
114 |
with gr.Row():
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
|
124 |
with gr.Row():
|
125 |
prompt = gr.Text(
|
@@ -134,20 +154,20 @@ with gr.Blocks(css=css) as demo:
|
|
134 |
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
|
135 |
|
136 |
with gr.Row():
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
)
|
152 |
|
153 |
control_image = gr.Image(label="ControlNet Image", type="pil", visible=False)
|
@@ -168,7 +188,6 @@ with gr.Blocks(css=css) as demo:
|
|
168 |
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil", visible=False)
|
169 |
|
170 |
with gr.Row():
|
171 |
-
|
172 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
173 |
|
174 |
result = gr.Image(label="Result", show_label=False)
|
@@ -198,7 +217,7 @@ with gr.Blocks(css=css) as demo:
|
|
198 |
minimum=256,
|
199 |
maximum=MAX_IMAGE_SIZE,
|
200 |
step=32,
|
201 |
-
value=512,
|
202 |
)
|
203 |
|
204 |
height = gr.Slider(
|
@@ -206,7 +225,7 @@ with gr.Blocks(css=css) as demo:
|
|
206 |
minimum=256,
|
207 |
maximum=MAX_IMAGE_SIZE,
|
208 |
step=32,
|
209 |
-
value=512,
|
210 |
)
|
211 |
|
212 |
with gr.Row():
|
@@ -215,7 +234,7 @@ with gr.Blocks(css=css) as demo:
|
|
215 |
minimum=0.0,
|
216 |
maximum=10.0,
|
217 |
step=0.1,
|
218 |
-
value=9.0,
|
219 |
)
|
220 |
|
221 |
num_inference_steps = gr.Slider(
|
@@ -223,10 +242,11 @@ with gr.Blocks(css=css) as demo:
|
|
223 |
minimum=1,
|
224 |
maximum=50,
|
225 |
step=1,
|
226 |
-
value=36,
|
227 |
)
|
228 |
|
229 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
230 |
gr.on(
|
231 |
triggers=[run_button.click, prompt.submit],
|
232 |
fn=infer,
|
@@ -251,13 +271,13 @@ with gr.Blocks(css=css) as demo:
|
|
251 |
],
|
252 |
outputs=[result, seed],
|
253 |
)
|
|
|
254 |
controlnet_enabled.change(
|
255 |
fn=update_controlnet_visibility,
|
256 |
inputs=[controlnet_enabled],
|
257 |
outputs=[control_strength, control_mode, control_image],
|
258 |
)
|
259 |
|
260 |
-
# Updates visibility when the checkbox for IP-Adapter is toggled
|
261 |
ip_adapter_enabled.change(
|
262 |
fn=update_ip_adapter_visibility,
|
263 |
inputs=[ip_adapter_enabled],
|
@@ -266,4 +286,4 @@ with gr.Blocks(css=css) as demo:
|
|
266 |
|
267 |
|
268 |
if __name__ == "__main__":
|
269 |
-
demo.launch()
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
from peft import PeftModel, LoraConfig
|
|
|
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
|
|
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 1024
|
16 |
|
17 |
+
# ControlNet modes list with aliases
|
18 |
+
CONTROLNET_MODES = {
|
19 |
+
"Canny Edge Detection": "lllyasviel/control_v11p_sd15_canny",
|
20 |
+
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
|
21 |
+
"Inpainting": "lllyasviel/control_v11p_sd15_inpaint",
|
22 |
+
"Multi-Level Line Segments": "lllyasviel/control_v11p_sd15_mlsd",
|
23 |
+
"Depth Estimation": "lllyasviel/control_v11f1p_sd15_depth",
|
24 |
+
"Surface Normal Estimation": "lllyasviel/control_v11p_sd15_normalbae",
|
25 |
+
"Image Segmentation": "lllyasviel/control_v11p_sd15_seg",
|
26 |
+
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart",
|
27 |
+
"Anime Line Art": "lllyasviel/control_v11p_sd15_lineart_anime",
|
28 |
+
"Human Pose Estimation": "lllyasviel/control_v11p_sd15_openpose",
|
29 |
+
"Scribble-Based Generation": "lllyasviel/control_v11p_sd15_scribble",
|
30 |
+
"Soft Edge Generation": "lllyasviel/control_v11p_sd15_softedge",
|
31 |
+
"Image Shuffling": "lllyasviel/control_v11e_sd15_shuffle",
|
32 |
+
"Image Tiling": "lllyasviel/control_v11f1e_sd15_tile",
|
33 |
+
}
|
34 |
|
35 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
36 |
def infer(
|
|
|
59 |
generator = torch.Generator().manual_seed(seed)
|
60 |
|
61 |
pipe = None
|
62 |
+
if model_id == "SD1.5 + lora Unet TextEncoder":
|
63 |
+
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
64 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/VanillaCat", subfolder="unet")
|
65 |
pipe.safety_checker = None
|
66 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/VanillaCat", subfolder="text_encoder")
|
67 |
+
elif model_id == "SD1.5 + lora Unet":
|
68 |
+
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
69 |
pipe.safety_checker = None
|
70 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/cartoon_cat_stickers")
|
71 |
else:
|
72 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
73 |
pipe.safety_checker = None
|
74 |
+
|
75 |
+
if controlnet_enabled:
|
76 |
+
controlnet_model = CONTROLNET_MODES.get(control_mode)
|
77 |
+
if controlnet_model:
|
78 |
+
controlnet_model = ControlNetModel.from_pretrained(controlnet_model)
|
79 |
+
pipe.controlnet = controlnet_model
|
80 |
+
|
81 |
pipe = pipe.to(device)
|
82 |
|
83 |
image = pipe(
|
|
|
88 |
width=width,
|
89 |
height=height,
|
90 |
generator=generator,
|
91 |
+
cross_attention_kwargs={"scale": lscale},
|
92 |
+
control_image=control_image,
|
93 |
+
controlnet_conditioning_scale=control_strength
|
94 |
).images[0]
|
95 |
|
96 |
return image, seed
|
|
|
110 |
"""
|
111 |
|
112 |
def update_controlnet_visibility(controlnet_enabled):
|
|
|
113 |
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled)
|
114 |
|
115 |
def update_ip_adapter_visibility(ip_adapter_enabled):
|
|
|
116 |
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled)
|
117 |
|
118 |
|
|
|
119 |
with gr.Blocks(css=css) as demo:
|
120 |
with gr.Column(elem_id="col-container"):
|
121 |
gr.Markdown(" # UM235 DIFFUSION Space")
|
122 |
|
123 |
model_id_input = gr.Dropdown(
|
124 |
+
label="Choose Model",
|
125 |
+
choices=[
|
126 |
+
"stable-diffusion-v1-5/stable-diffusion-v1-5",
|
127 |
+
"CompVis/stable-diffusion-v1-4",
|
128 |
+
"SD1.5 + lora Unet TextEncoder",
|
129 |
+
"SD1.5 + lora Unet"
|
130 |
+
],
|
131 |
+
value="SD1.5 + lora Unet TextEncoder",
|
132 |
+
show_label=True,
|
133 |
+
type="value",
|
134 |
)
|
135 |
with gr.Row():
|
136 |
+
lscale = gr.Slider(
|
137 |
+
label="Lora scale",
|
138 |
+
minimum=0,
|
139 |
+
maximum=2,
|
140 |
+
step=0.05,
|
141 |
+
value=1,
|
142 |
+
)
|
|
|
143 |
|
144 |
with gr.Row():
|
145 |
prompt = gr.Text(
|
|
|
154 |
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
|
155 |
|
156 |
with gr.Row():
|
157 |
+
control_strength = gr.Slider(
|
158 |
+
label="ControlNet scale",
|
159 |
+
minimum=0.0,
|
160 |
+
maximum=1.0,
|
161 |
+
step=0.05,
|
162 |
+
value=0.75,
|
163 |
+
visible=False,
|
164 |
+
)
|
165 |
|
166 |
+
control_mode = gr.Dropdown(
|
167 |
+
label="ControlNet Mode",
|
168 |
+
choices=list(CONTROLNET_MODES.keys()),
|
169 |
+
value="Canny Edge Detection",
|
170 |
+
visible=False,
|
171 |
)
|
172 |
|
173 |
control_image = gr.Image(label="ControlNet Image", type="pil", visible=False)
|
|
|
188 |
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil", visible=False)
|
189 |
|
190 |
with gr.Row():
|
|
|
191 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
192 |
|
193 |
result = gr.Image(label="Result", show_label=False)
|
|
|
217 |
minimum=256,
|
218 |
maximum=MAX_IMAGE_SIZE,
|
219 |
step=32,
|
220 |
+
value=512,
|
221 |
)
|
222 |
|
223 |
height = gr.Slider(
|
|
|
225 |
minimum=256,
|
226 |
maximum=MAX_IMAGE_SIZE,
|
227 |
step=32,
|
228 |
+
value=512,
|
229 |
)
|
230 |
|
231 |
with gr.Row():
|
|
|
234 |
minimum=0.0,
|
235 |
maximum=10.0,
|
236 |
step=0.1,
|
237 |
+
value=9.0,
|
238 |
)
|
239 |
|
240 |
num_inference_steps = gr.Slider(
|
|
|
242 |
minimum=1,
|
243 |
maximum=50,
|
244 |
step=1,
|
245 |
+
value=36,
|
246 |
)
|
247 |
|
248 |
gr.Examples(examples=examples, inputs=[prompt])
|
249 |
+
|
250 |
gr.on(
|
251 |
triggers=[run_button.click, prompt.submit],
|
252 |
fn=infer,
|
|
|
271 |
],
|
272 |
outputs=[result, seed],
|
273 |
)
|
274 |
+
|
275 |
controlnet_enabled.change(
|
276 |
fn=update_controlnet_visibility,
|
277 |
inputs=[controlnet_enabled],
|
278 |
outputs=[control_strength, control_mode, control_image],
|
279 |
)
|
280 |
|
|
|
281 |
ip_adapter_enabled.change(
|
282 |
fn=update_ip_adapter_visibility,
|
283 |
inputs=[ip_adapter_enabled],
|
|
|
286 |
|
287 |
|
288 |
if __name__ == "__main__":
|
289 |
+
demo.launch()
|