Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from diffusers import ControlNetModel
|
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
from rembg import remove
|
|
|
10 |
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
if torch.cuda.is_available():
|
@@ -54,7 +55,11 @@ def infer(
|
|
54 |
ip_adapter_enabled=False,
|
55 |
ip_adapter_scale=0.0,
|
56 |
ip_adapter_image=None,
|
|
|
|
|
|
|
57 |
progress=gr.Progress(track_tqdm=True),
|
|
|
58 |
):
|
59 |
control_strength=float(control_strength)
|
60 |
if randomize_seed:
|
@@ -69,7 +74,7 @@ def infer(
|
|
69 |
if controlnet_enabled and control_image:
|
70 |
controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
|
71 |
if model_id == "SD1.5 + lora Unet TextEncoder":
|
72 |
-
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-
|
73 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
|
74 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
|
75 |
elif model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
|
@@ -93,7 +98,7 @@ def infer(
|
|
93 |
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
94 |
|
95 |
pipe.safety_checker = None
|
96 |
-
|
97 |
pipe = pipe.to(device)
|
98 |
|
99 |
image = pipe(
|
@@ -108,12 +113,13 @@ def infer(
|
|
108 |
cross_attention_kwargs={"scale": lscale},
|
109 |
controlnet_conditioning_scale=control_strength,
|
110 |
ip_adapter_image=ip_adapter_image,
|
|
|
111 |
).images[0]
|
112 |
|
113 |
-
|
114 |
-
|
115 |
|
116 |
-
|
117 |
return image, seed
|
118 |
|
119 |
|
@@ -207,7 +213,7 @@ with gr.Blocks(css=css) as demo:
|
|
207 |
minimum=0.0,
|
208 |
maximum=2.0,
|
209 |
step=0.05,
|
210 |
-
value=
|
211 |
visible=False,
|
212 |
)
|
213 |
|
@@ -295,6 +301,9 @@ with gr.Blocks(css=css) as demo:
|
|
295 |
ip_adapter_enabled,
|
296 |
ip_adapter_scale,
|
297 |
ip_adapter_image,
|
|
|
|
|
|
|
298 |
],
|
299 |
outputs=[result, seed],
|
300 |
)
|
@@ -310,7 +319,5 @@ with gr.Blocks(css=css) as demo:
|
|
310 |
inputs=[ip_adapter_enabled],
|
311 |
outputs=[ip_adapter_scale, ip_adapter_image],
|
312 |
)
|
313 |
-
|
314 |
-
|
315 |
if __name__ == "__main__":
|
316 |
demo.launch()
|
|
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
from rembg import remove
|
10 |
+
from diffusers import DiffusionPipeline, DDIMScheduler
|
11 |
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
if torch.cuda.is_available():
|
|
|
55 |
ip_adapter_enabled=False,
|
56 |
ip_adapter_scale=0.0,
|
57 |
ip_adapter_image=None,
|
58 |
+
d_bckg=False,
|
59 |
+
ddim_use=False,
|
60 |
+
distill_vae=False,
|
61 |
progress=gr.Progress(track_tqdm=True),
|
62 |
+
|
63 |
):
|
64 |
control_strength=float(control_strength)
|
65 |
if randomize_seed:
|
|
|
74 |
if controlnet_enabled and control_image:
|
75 |
controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
|
76 |
if model_id == "SD1.5 + lora Unet TextEncoder":
|
77 |
+
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model)
|
78 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
|
79 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
|
80 |
elif model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
|
|
|
98 |
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
99 |
|
100 |
pipe.safety_checker = None
|
101 |
+
if ddim_use: pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
|
102 |
pipe = pipe.to(device)
|
103 |
|
104 |
image = pipe(
|
|
|
113 |
cross_attention_kwargs={"scale": lscale},
|
114 |
controlnet_conditioning_scale=control_strength,
|
115 |
ip_adapter_image=ip_adapter_image,
|
116 |
+
|
117 |
).images[0]
|
118 |
|
119 |
+
if d_bckg:
|
120 |
+
image=remove(image)
|
121 |
|
122 |
+
|
123 |
return image, seed
|
124 |
|
125 |
|
|
|
213 |
minimum=0.0,
|
214 |
maximum=2.0,
|
215 |
step=0.05,
|
216 |
+
value=0.55,
|
217 |
visible=False,
|
218 |
)
|
219 |
|
|
|
301 |
ip_adapter_enabled,
|
302 |
ip_adapter_scale,
|
303 |
ip_adapter_image,
|
304 |
+
d_bckg,
|
305 |
+
ddim_use,
|
306 |
+
distill_vae
|
307 |
],
|
308 |
outputs=[result, seed],
|
309 |
)
|
|
|
319 |
inputs=[ip_adapter_enabled],
|
320 |
outputs=[ip_adapter_scale, ip_adapter_image],
|
321 |
)
|
|
|
|
|
322 |
if __name__ == "__main__":
|
323 |
demo.launch()
|