um235 commited on
Commit
0526f37
·
verified ·
1 Parent(s): 9111970

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -8
app.py CHANGED
@@ -7,6 +7,7 @@ from diffusers import ControlNetModel
7
  import torch
8
  from PIL import Image
9
  from rembg import remove
 
10
 
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
  if torch.cuda.is_available():
@@ -54,7 +55,11 @@ def infer(
54
  ip_adapter_enabled=False,
55
  ip_adapter_scale=0.0,
56
  ip_adapter_image=None,
 
 
 
57
  progress=gr.Progress(track_tqdm=True),
 
58
  ):
59
  control_strength=float(control_strength)
60
  if randomize_seed:
@@ -69,7 +74,7 @@ def infer(
69
  if controlnet_enabled and control_image:
70
  controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
71
  if model_id == "SD1.5 + lora Unet TextEncoder":
72
- pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-deeffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model)
73
  pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
74
  pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
75
  elif model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
@@ -93,7 +98,7 @@ def infer(
93
  pipe.set_ip_adapter_scale(ip_adapter_scale)
94
 
95
  pipe.safety_checker = None
96
-
97
  pipe = pipe.to(device)
98
 
99
  image = pipe(
@@ -108,12 +113,13 @@ def infer(
108
  cross_attention_kwargs={"scale": lscale},
109
  controlnet_conditioning_scale=control_strength,
110
  ip_adapter_image=ip_adapter_image,
 
111
  ).images[0]
112
 
113
- #if d_bckg:
114
- #image=remove(image)
115
 
116
- #pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
117
  return image, seed
118
 
119
 
@@ -207,7 +213,7 @@ with gr.Blocks(css=css) as demo:
207
  minimum=0.0,
208
  maximum=2.0,
209
  step=0.05,
210
- value=1.0,
211
  visible=False,
212
  )
213
 
@@ -295,6 +301,9 @@ with gr.Blocks(css=css) as demo:
295
  ip_adapter_enabled,
296
  ip_adapter_scale,
297
  ip_adapter_image,
 
 
 
298
  ],
299
  outputs=[result, seed],
300
  )
@@ -310,7 +319,5 @@ with gr.Blocks(css=css) as demo:
310
  inputs=[ip_adapter_enabled],
311
  outputs=[ip_adapter_scale, ip_adapter_image],
312
  )
313
-
314
-
315
  if __name__ == "__main__":
316
  demo.launch()
 
7
  import torch
8
  from PIL import Image
9
  from rembg import remove
10
+ from diffusers import DiffusionPipeline, DDIMScheduler
11
 
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
  if torch.cuda.is_available():
 
55
  ip_adapter_enabled=False,
56
  ip_adapter_scale=0.0,
57
  ip_adapter_image=None,
58
+ d_bckg=False,
59
+ ddim_use=False,
60
+ distill_vae=False,
61
  progress=gr.Progress(track_tqdm=True),
62
+
63
  ):
64
  control_strength=float(control_strength)
65
  if randomize_seed:
 
74
  if controlnet_enabled and control_image:
75
  controlnet_model = ControlNetModel.from_pretrained(CONTROLNET_MODES.get(control_mode))
76
  if model_id == "SD1.5 + lora Unet TextEncoder":
77
+ pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model)
78
  pipe.unet = PeftModel.from_pretrained(pipe.unet, "um235/vCat_v2", subfolder="unet")
79
  pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "um235/vCat_v2", subfolder="text_encoder")
80
  elif model_id == "SD1.5 + lora Unet TextEncoder" or model_id == "SD1.5 + lora Unet":
 
98
  pipe.set_ip_adapter_scale(ip_adapter_scale)
99
 
100
  pipe.safety_checker = None
101
+ if ddim_use: pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
102
  pipe = pipe.to(device)
103
 
104
  image = pipe(
 
113
  cross_attention_kwargs={"scale": lscale},
114
  controlnet_conditioning_scale=control_strength,
115
  ip_adapter_image=ip_adapter_image,
116
+
117
  ).images[0]
118
 
119
+ if d_bckg:
120
+ image=remove(image)
121
 
122
+
123
  return image, seed
124
 
125
 
 
213
  minimum=0.0,
214
  maximum=2.0,
215
  step=0.05,
216
+ value=0.55,
217
  visible=False,
218
  )
219
 
 
301
  ip_adapter_enabled,
302
  ip_adapter_scale,
303
  ip_adapter_image,
304
+ d_bckg,
305
+ ddim_use,
306
+ distill_vae
307
  ],
308
  outputs=[result, seed],
309
  )
 
319
  inputs=[ip_adapter_enabled],
320
  outputs=[ip_adapter_scale, ip_adapter_image],
321
  )
 
 
322
  if __name__ == "__main__":
323
  demo.launch()