diffusion / app.py
um235's picture
Update app.py
47501a2 verified
raw
history blame
8.73 kB
import gradio as gr
import numpy as np
import random
from peft import PeftModel, LoraConfig
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
model_id,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lscale,
controlnet_enabled,
control_strength,
control_mode,
control_image,
ip_adapter_enabled,
ip_adapter_scale,
ip_adapter_image,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
pipe = None
if (model_id=="stable-diffusion-v1-5/stable-diffusion-v1-5 with lora"):
pipe=DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/cartoon_cat_stickers/unet")
pipe.text_encoder= PeftModel.from_pretrained(pipe.text_encoder,"um235/cartoon_cat_stickers/text_encoder")
else:
print("stable-diffusion-v1-5/stable-diffusion-v1-5 with lora")
pipe=DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lscale}
).images[0]
return image, seed
examples = [
"Sticker VanillaCat. Cartoon-style cat with soft yellow fur and a white flower on its head, sitting up with a relaxed expression, eyes half-closed, content and calm, casual pose, peaceful mood, white background.",
"Sticker VanillaCat. Cartoon-style cat with soft yellow fur and a white flower on its head, standing with a mischievous grin, one paw raised playfully, bright eyes full of energy, cheeky and fun, white background",
"Sticker VanillaCat. Cartoon-style cat with soft yellow fur and a white flower on its head, jumping mid-air with a surprised expression, wide eyes, and mouth open in excitement, paws stretched out, energetic and playful, forest background.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
def update_controlnet_visibility(controlnet_enabled):
# Возвращаем два значения для обновления видимости control_strength и control_mode
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled)
def update_ip_adapter_visibility(ip_adapter_enabled):
# Возвращаем два значения для обновления видимости ip_adapter_scale и ip_adapter_image
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled)
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # UM235 DIFFUSION Space")
model_id_input = gr.Dropdown(
label="Choose Model",
choices=[
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"CompVis/stable-diffusion-v1-4",
"stable-diffusion-v1-5/stable-diffusion-v1-5 with lora",
],
value="stable-diffusion-v1-5/stable-diffusion-v1-5 with lora",
show_label=True,
type="value",
)
with gr.Row():
lscale = gr.Slider(
label="Lora scale",
minimum=0,
maximum=2,
step=0.05,
value=1,
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
with gr.Accordion("ControlNet Settings", open=False):
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
with gr.Row():
control_strength = gr.Slider(
label="ControlNet scale",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.75,
visible=False,
)
control_mode = gr.Dropdown(
label="ControlNet Mode",
choices=["edge_detection", "pose_estimation", "depth_estimation"],
value="edge_detection",
visible=False,
)
control_image = gr.Image(label="ControlNet Image", type="pil", visible=False)
with gr.Accordion("IP-Adapter Settings", open=False):
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False)
with gr.Row():
ip_adapter_scale = gr.Slider(
label="IP-Adapter Scale",
minimum=0.0,
maximum=2.0,
step=0.05,
value=1.0,
visible=False,
)
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil", visible=False)
with gr.Row():
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_id_input,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lscale,
controlnet_enabled,
control_strength,
control_mode,
control_image,
ip_adapter_enabled,
ip_adapter_scale,
ip_adapter_image,
],
outputs=[result, seed],
)
controlnet_enabled.change(
fn=update_controlnet_visibility,
inputs=[controlnet_enabled],
outputs=[control_strength, control_mode, control_image],
)
# Updates visibility when the checkbox for IP-Adapter is toggled
ip_adapter_enabled.change(
fn=update_ip_adapter_visibility,
inputs=[ip_adapter_enabled],
outputs=[ip_adapter_scale, ip_adapter_image],
)
if __name__ == "__main__":
demo.launch()