|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from peft import PeftModel, LoraConfig |
|
|
|
|
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
|
|
def infer( |
|
model_id, |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
lscale, |
|
controlnet_enabled, |
|
control_strength, |
|
control_mode, |
|
control_image, |
|
ip_adapter_enabled, |
|
ip_adapter_scale, |
|
ip_adapter_image, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
pipe = None |
|
if (model_id=="stable-diffusion-v1-5/stable-diffusion-v1-5 with lora"): |
|
pipe=DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype) |
|
pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/cartoon_cat_stickers/unet") |
|
pipe.text_encoder= PeftModel.from_pretrained(pipe.text_encoder,"um235/cartoon_cat_stickers/text_encoder") |
|
else: |
|
print("stable-diffusion-v1-5/stable-diffusion-v1-5 with lora") |
|
pipe=DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) |
|
pipe = pipe.to(device) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
cross_attention_kwargs={"scale": lscale} |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
"Sticker VanillaCat. Cartoon-style cat with soft yellow fur and a white flower on its head, sitting up with a relaxed expression, eyes half-closed, content and calm, casual pose, peaceful mood, white background.", |
|
"Sticker VanillaCat. Cartoon-style cat with soft yellow fur and a white flower on its head, standing with a mischievous grin, one paw raised playfully, bright eyes full of energy, cheeky and fun, white background", |
|
"Sticker VanillaCat. Cartoon-style cat with soft yellow fur and a white flower on its head, jumping mid-air with a surprised expression, wide eyes, and mouth open in excitement, paws stretched out, energetic and playful, forest background.", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
""" |
|
|
|
def update_controlnet_visibility(controlnet_enabled): |
|
|
|
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled) |
|
|
|
def update_ip_adapter_visibility(ip_adapter_enabled): |
|
|
|
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled) |
|
|
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(" # UM235 DIFFUSION Space") |
|
|
|
model_id_input = gr.Dropdown( |
|
label="Choose Model", |
|
choices=[ |
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", |
|
"CompVis/stable-diffusion-v1-4", |
|
"stable-diffusion-v1-5/stable-diffusion-v1-5 with lora", |
|
], |
|
value="stable-diffusion-v1-5/stable-diffusion-v1-5 with lora", |
|
show_label=True, |
|
type="value", |
|
) |
|
with gr.Row(): |
|
lscale = gr.Slider( |
|
label="Lora scale", |
|
minimum=0, |
|
maximum=2, |
|
step=0.05, |
|
value=1, |
|
) |
|
|
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
with gr.Accordion("ControlNet Settings", open=False): |
|
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False) |
|
|
|
with gr.Row(): |
|
control_strength = gr.Slider( |
|
label="ControlNet scale", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.75, |
|
visible=False, |
|
) |
|
|
|
control_mode = gr.Dropdown( |
|
label="ControlNet Mode", |
|
choices=["edge_detection", "pose_estimation", "depth_estimation"], |
|
value="edge_detection", |
|
visible=False, |
|
) |
|
|
|
control_image = gr.Image(label="ControlNet Image", type="pil", visible=False) |
|
|
|
with gr.Accordion("IP-Adapter Settings", open=False): |
|
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False) |
|
|
|
with gr.Row(): |
|
ip_adapter_scale = gr.Slider( |
|
label="IP-Adapter Scale", |
|
minimum=0.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.0, |
|
visible=False, |
|
) |
|
|
|
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil", visible=False) |
|
|
|
with gr.Row(): |
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=7.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=20, |
|
) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
model_id_input, |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
lscale, |
|
controlnet_enabled, |
|
control_strength, |
|
control_mode, |
|
control_image, |
|
ip_adapter_enabled, |
|
ip_adapter_scale, |
|
ip_adapter_image, |
|
], |
|
outputs=[result, seed], |
|
) |
|
controlnet_enabled.change( |
|
fn=update_controlnet_visibility, |
|
inputs=[controlnet_enabled], |
|
outputs=[control_strength, control_mode, control_image], |
|
) |
|
|
|
|
|
ip_adapter_enabled.change( |
|
fn=update_ip_adapter_visibility, |
|
inputs=[ip_adapter_enabled], |
|
outputs=[ip_adapter_scale, ip_adapter_image], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |