Spaces:
No application file
No application file
from langchain_community.vectorstores.pgvector import PGVector | |
import os | |
# try: | |
# CONNECTION_STRING = PGVector.connection_string_from_db_params( | |
# driver="psycopg2", | |
# host=os.getenv("POSTGRES_HOST"), | |
# port=int(os.getenv("POSTGRES_PORT", 5432)), | |
# database=os.getenv("POSTGRES_DB"), | |
# user=os.getenv("POSTGRES_USER"), | |
# password=os.getenv("POSTGRES_PASSWORD"), | |
# ) | |
# print("Successfully established the connection") | |
# except Exception as e: | |
# print("Error in establishing the connection with DB: {e}") | |
print("Entered here") | |
from dotenv import load_dotenv | |
load_dotenv() | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
from sqlalchemy import create_engine | |
from langchain_postgres.vectorstores import PGVector | |
from langchain_core.documents import Document | |
document_1 = Document(page_content="fddsdfoo", metadata={"baz": "bar"}) | |
document_2 = Document(page_content="thufeed", metadata={"bar": "baz"}) | |
document_3 = Document(page_content="i wefsill be deleted :(") | |
documents = [document_1, document_2, document_3] | |
ids = ["1", "2", "3"] | |
engine = create_engine(os.environ['CONNECTION_STRING']) | |
vector_store = PGVector.from_documents( | |
documents=documents, | |
embedding=embeddings, | |
connection=os.environ['CONNECTION_STRING'], | |
collection_name="collection_name", | |
use_jsonb=True, | |
) | |
# vector_store.add_documents(documents=documents, ids=ids) | |
print("Stored babe") |