neural-search / core /pipelines.py
ugmSorcero
Linting
b8acde7
raw
history blame
5.57 kB
"""
Haystack Pipelines
"""
from pathlib import Path
from haystack import Pipeline
from haystack.document_stores import InMemoryDocumentStore
from haystack.nodes.retriever import DensePassageRetriever, TfidfRetriever
from haystack.nodes.preprocessor import PreProcessor
from haystack.nodes.ranker import SentenceTransformersRanker
from haystack.nodes.audio.document_to_speech import DocumentToSpeech
import os
data_path = "data/"
os.makedirs(data_path, exist_ok=True)
def keyword_search(index="documents", split_word_length=100, audio_output=False):
"""
**Keyword Search Pipeline**
It looks for words in the documents that match the query by using TF-IDF.
TF-IDF is a commonly used baseline for information retrieval that exploits two key intuitions:
- Documents that have more lexical overlap with the query are more likely to be relevant
- Words that occur in fewer documents are more significant than words that occur in many documents
"""
document_store = InMemoryDocumentStore(index=index)
keyword_retriever = TfidfRetriever(document_store=(document_store))
processor = PreProcessor(
clean_empty_lines=True,
clean_whitespace=True,
clean_header_footer=True,
split_by="word",
split_length=split_word_length,
split_respect_sentence_boundary=True,
split_overlap=0,
)
# SEARCH PIPELINE
search_pipeline = Pipeline()
search_pipeline.add_node(keyword_retriever, name="TfidfRetriever", inputs=["Query"])
# INDEXING PIPELINE
index_pipeline = Pipeline()
index_pipeline.add_node(processor, name="Preprocessor", inputs=["File"])
index_pipeline.add_node(
document_store, name="DocumentStore", inputs=["Preprocessor"]
)
if audio_output:
doc2speech = DocumentToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits",
generated_audio_dir=Path(data_path + "audio"),
)
search_pipeline.add_node(
doc2speech, name="DocumentToSpeech", inputs=["TfidfRetriever"]
)
return search_pipeline, index_pipeline
def dense_passage_retrieval(
index="documents",
split_word_length=100,
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
audio_output=False,
):
"""
**Dense Passage Retrieval Pipeline**
Dense Passage Retrieval is a highly performant retrieval method that calculates relevance using dense representations. Key features:
- One BERT base model to encode documents
- One BERT base model to encode queries
- Ranking of documents done by dot product similarity between query and document embeddings
"""
document_store = InMemoryDocumentStore(index=index)
dpr_retriever = DensePassageRetriever(
document_store=document_store,
query_embedding_model=query_embedding_model,
passage_embedding_model=passage_embedding_model,
)
processor = PreProcessor(
clean_empty_lines=True,
clean_whitespace=True,
clean_header_footer=True,
split_by="word",
split_length=split_word_length,
split_respect_sentence_boundary=True,
split_overlap=0,
)
# SEARCH PIPELINE
search_pipeline = Pipeline()
search_pipeline.add_node(dpr_retriever, name="DPRRetriever", inputs=["Query"])
# INDEXING PIPELINE
index_pipeline = Pipeline()
index_pipeline.add_node(processor, name="Preprocessor", inputs=["File"])
index_pipeline.add_node(dpr_retriever, name="DPRRetriever", inputs=["Preprocessor"])
index_pipeline.add_node(
document_store, name="DocumentStore", inputs=["DPRRetriever"]
)
if audio_output:
doc2speech = DocumentToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits",
generated_audio_dir=Path(data_path + "audio"),
)
search_pipeline.add_node(
doc2speech, name="DocumentToSpeech", inputs=["DPRRetriever"]
)
return search_pipeline, index_pipeline
def dense_passage_retrieval_ranker(
index="documents",
split_word_length=100,
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
ranker_model="cross-encoder/ms-marco-MiniLM-L-12-v2",
audio_output=False,
):
"""
**Dense Passage Retrieval Ranker Pipeline**
It adds a Ranker to the `Dense Passage Retrieval Pipeline`.
- A Ranker reorders a set of Documents based on their relevance to the Query.
- It is particularly useful when your Retriever has high recall but poor relevance scoring.
- The improvement that the Ranker brings comes at the cost of some additional computation time.
"""
search_pipeline, index_pipeline = dense_passage_retrieval(
index=index,
split_word_length=split_word_length,
query_embedding_model=query_embedding_model,
passage_embedding_model=passage_embedding_model,
)
ranker = SentenceTransformersRanker(model_name_or_path=ranker_model)
search_pipeline.add_node(ranker, name="Ranker", inputs=["DPRRetriever"])
if audio_output:
doc2speech = DocumentToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits",
generated_audio_dir=Path(data_path + "audio"),
)
search_pipeline.add_node(doc2speech, name="DocumentToSpeech", inputs=["Ranker"])
return search_pipeline, index_pipeline