neural-search / interface /components.py
ugaray96's picture
Adds audio to text converter and fixes tfidf
710a34d verified
raw
history blame
6.49 kB
import streamlit as st
from interface.utils import (
get_pipelines,
extract_text_from_url,
extract_text_from_file,
reset_vars_data,
)
from interface.draw_pipelines import get_pipeline_graph
def component_select_pipeline(container):
pipeline_names, pipeline_funcs, pipeline_func_parameters = get_pipelines()
with st.spinner("Loading Pipeline..."):
with container:
selected_pipeline = st.selectbox(
"Select pipeline",
pipeline_names,
index=pipeline_names.index("Keyword Search")
if "Keyword Search" in pipeline_names
else 0,
)
index_pipe = pipeline_names.index(selected_pipeline)
st.write("---")
st.header("Pipeline Parameters")
for parameter, value in pipeline_func_parameters[index_pipe].items():
if isinstance(value, str):
value = st.text_input(parameter, value)
elif isinstance(value, bool):
value = st.checkbox(parameter, value)
elif isinstance(value, int):
value = int(st.number_input(parameter, value=value))
elif isinstance(value, float):
value = float(st.number_input(parameter, value=value))
pipeline_func_parameters[index_pipe][parameter] = value
if (
st.session_state["pipeline"] is None
or st.session_state["pipeline"]["name"] != selected_pipeline
or list(
st.session_state["pipeline_func_parameters"][index_pipe].values()
)
!= list(pipeline_func_parameters[index_pipe].values())
):
st.session_state["pipeline_func_parameters"] = pipeline_func_parameters
(search_pipeline, index_pipeline,) = pipeline_funcs[
index_pipe
](**pipeline_func_parameters[index_pipe])
st.session_state["pipeline"] = {
"name": selected_pipeline,
"search_pipeline": search_pipeline,
"index_pipeline": index_pipeline,
"doc": pipeline_funcs[index_pipe].__doc__,
}
reset_vars_data()
# TODO: Use elasticsearch and remove this workaround for TFIDF
# Reload if Keyword Search is selected
elif st.session_state["pipeline"]["name"] == "Keyword Search":
st.session_state["pipeline_func_parameters"] = pipeline_func_parameters
(search_pipeline, index_pipeline,) = pipeline_funcs[
index_pipe
](**pipeline_func_parameters[index_pipe])
st.session_state["pipeline"] = {
"name": selected_pipeline,
"search_pipeline": search_pipeline,
"index_pipeline": index_pipeline,
"doc": pipeline_funcs[index_pipe].__doc__,
}
def component_show_pipeline(pipeline, pipeline_name):
"""Draw the pipeline"""
expander_text = "Show pipeline"
if pipeline["doc"] is not None and "BUG" in pipeline["doc"]:
expander_text += " ⚠️"
with st.expander(expander_text):
if pipeline["doc"] is not None:
st.markdown(pipeline["doc"])
fig = get_pipeline_graph(pipeline[pipeline_name])
st.plotly_chart(fig, use_container_width=True)
def component_show_search_result(container, results):
with container:
for idx, document in enumerate(results):
st.markdown(f"### Match {idx+1}")
st.markdown(f"**Text**: {document['text']}")
st.markdown(f"**Document**: {document['id']}")
if "_split_id" in document["meta"]:
st.markdown(f"**Document Chunk**: {document['meta']['_split_id']}")
if "score" in document:
st.markdown(f"**Score**: {document['score']:.3f}")
if "content_audio" in document:
st.audio(str(document["content_audio"]))
st.markdown("---")
def component_text_input(container, doc_id):
"""Draw the Text Input widget"""
with container:
texts = []
with st.expander("Enter documents"):
while True:
text = st.text_input(f"Document {doc_id}", key=doc_id)
if text != "":
texts.append({"text": text, "doc_id": doc_id})
doc_id += 1
st.markdown("---")
else:
break
corpus = [{"text": doc["text"], "id": doc["doc_id"]} for doc in texts]
return corpus, doc_id
def component_article_url(container, doc_id):
"""Draw the Article URL widget"""
with container:
urls = []
with st.expander("Enter URLs"):
while True:
url = st.text_input(f"URL {doc_id}", key=doc_id)
if url != "":
urls.append({"text": extract_text_from_url(url), "doc_id": doc_id})
doc_id += 1
st.markdown("---")
else:
break
for idx, doc in enumerate(urls):
with st.expander(f"Preview URL {idx}"):
st.write(doc["text"])
corpus = [{"text": doc["text"], "id": doc["doc_id"]} for doc in urls]
return corpus, doc_id
def component_file_input(container, doc_id):
"""Draw the extract text from file widget"""
with container:
files = []
with st.expander("Enter Files"):
while True:
file = st.file_uploader(
"Upload a .txt, .pdf, .csv, image file, audio file", key=doc_id
)
if file != None:
extracted_text = extract_text_from_file(file)
if extracted_text != None:
files.append({"text": extracted_text, "doc_id": doc_id})
doc_id += 1
st.markdown("---")
else:
break
else:
break
for idx, doc in enumerate(files):
with st.expander(f"Preview File {idx}"):
st.write(doc["text"])
corpus = [{"text": doc["text"], "id": doc["doc_id"]} for doc in files]
return corpus, doc_id