Spaces:
Runtime error
Runtime error
fixed utils
Browse files
utils.py
CHANGED
@@ -51,4 +51,67 @@ def ensure_checkpoint_exists(model_weights_filename):
|
|
51 |
print(
|
52 |
model_weights_filename,
|
53 |
" not found, you may need to manually download the model weights."
|
54 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
print(
|
52 |
model_weights_filename,
|
53 |
" not found, you may need to manually download the model weights."
|
54 |
+
)
|
55 |
+
|
56 |
+
def normalize(image: np.ndarray) -> np.ndarray:
|
57 |
+
"""Normalize the ``OpenCV.imread`` or ``skimage.io.imread`` data.
|
58 |
+
Args:
|
59 |
+
image (np.ndarray): The image data read by ``OpenCV.imread`` or ``skimage.io.imread``.
|
60 |
+
Returns:
|
61 |
+
Normalized image data. Data range [0, 1].
|
62 |
+
"""
|
63 |
+
return image.astype(np.float64) / 255.0
|
64 |
+
|
65 |
+
|
66 |
+
def unnormalize(image: np.ndarray) -> np.ndarray:
|
67 |
+
"""Un-normalize the ``OpenCV.imread`` or ``skimage.io.imread`` data.
|
68 |
+
Args:
|
69 |
+
image (np.ndarray): The image data read by ``OpenCV.imread`` or ``skimage.io.imread``.
|
70 |
+
Returns:
|
71 |
+
Denormalized image data. Data range [0, 255].
|
72 |
+
"""
|
73 |
+
return image.astype(np.float64) * 255.0
|
74 |
+
|
75 |
+
|
76 |
+
def image2tensor(image: np.ndarray, range_norm: bool, half: bool) -> torch.Tensor:
|
77 |
+
"""Convert ``PIL.Image`` to Tensor.
|
78 |
+
Args:
|
79 |
+
image (np.ndarray): The image data read by ``PIL.Image``
|
80 |
+
range_norm (bool): Scale [0, 1] data to between [-1, 1]
|
81 |
+
half (bool): Whether to convert torch.float32 similarly to torch.half type.
|
82 |
+
Returns:
|
83 |
+
Normalized image data
|
84 |
+
Examples:
|
85 |
+
>>> image = Image.open("image.bmp")
|
86 |
+
>>> tensor_image = image2tensor(image, range_norm=False, half=False)
|
87 |
+
"""
|
88 |
+
tensor = F.to_tensor(image)
|
89 |
+
|
90 |
+
if range_norm:
|
91 |
+
tensor = tensor.mul_(2.0).sub_(1.0)
|
92 |
+
if half:
|
93 |
+
tensor = tensor.half()
|
94 |
+
|
95 |
+
return tensor
|
96 |
+
|
97 |
+
|
98 |
+
def tensor2image(tensor: torch.Tensor, range_norm: bool, half: bool) -> Any:
|
99 |
+
"""Converts ``torch.Tensor`` to ``PIL.Image``.
|
100 |
+
Args:
|
101 |
+
tensor (torch.Tensor): The image that needs to be converted to ``PIL.Image``
|
102 |
+
range_norm (bool): Scale [-1, 1] data to between [0, 1]
|
103 |
+
half (bool): Whether to convert torch.float32 similarly to torch.half type.
|
104 |
+
Returns:
|
105 |
+
Convert image data to support PIL library
|
106 |
+
Examples:
|
107 |
+
>>> tensor = torch.randn([1, 3, 128, 128])
|
108 |
+
>>> image = tensor2image(tensor, range_norm=False, half=False)
|
109 |
+
"""
|
110 |
+
if range_norm:
|
111 |
+
tensor = tensor.add_(1.0).div_(2.0)
|
112 |
+
if half:
|
113 |
+
tensor = tensor.half()
|
114 |
+
|
115 |
+
image = tensor.squeeze_(0).permute(1, 2, 0).mul_(255).clamp_(0, 255).cpu().numpy().astype("uint8")
|
116 |
+
|
117 |
+
return image
|