BayesCap / ds.py
udion's picture
hfspace gradio demo
99e984c
from __future__ import absolute_import, division, print_function
import random
import copy
import io
import os
import numpy as np
from PIL import Image
import skimage.transform
from collections import Counter
import torch
import torch.utils.data as data
from torch import Tensor
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode as IMode
import utils
class ImgDset(Dataset):
"""Customize the data set loading function and prepare low/high resolution image data in advance.
Args:
dataroot (str): Training data set address
image_size (int): High resolution image size
upscale_factor (int): Image magnification
mode (str): Data set loading method, the training data set is for data enhancement,
and the verification data set is not for data enhancement
"""
def __init__(self, dataroot: str, image_size: int, upscale_factor: int, mode: str) -> None:
super(ImgDset, self).__init__()
self.filenames = [os.path.join(dataroot, x) for x in os.listdir(dataroot)]
if mode == "train":
self.hr_transforms = transforms.Compose([
transforms.RandomCrop(image_size),
transforms.RandomRotation(90),
transforms.RandomHorizontalFlip(0.5),
])
else:
self.hr_transforms = transforms.Resize(image_size)
self.lr_transforms = transforms.Resize((image_size[0]//upscale_factor, image_size[1]//upscale_factor), interpolation=IMode.BICUBIC, antialias=True)
def __getitem__(self, batch_index: int) -> [Tensor, Tensor]:
# Read a batch of image data
image = Image.open(self.filenames[batch_index])
# Transform image
hr_image = self.hr_transforms(image)
lr_image = self.lr_transforms(hr_image)
# Convert image data into Tensor stream format (PyTorch).
# Note: The range of input and output is between [0, 1]
lr_tensor = utils.image2tensor(lr_image, range_norm=False, half=False)
hr_tensor = utils.image2tensor(hr_image, range_norm=False, half=False)
return lr_tensor, hr_tensor
def __len__(self) -> int:
return len(self.filenames)
class PairedImages_w_nameList(Dataset):
'''
can act as supervised or un-supervised based on flists
'''
def __init__(self, flist1, flist2, transform1=None, transform2=None, do_aug=False):
self.flist1 = flist1
self.flist2 = flist2
self.transform1 = transform1
self.transform2 = transform2
self.do_aug = do_aug
def __getitem__(self, index):
impath1 = self.flist1[index]
img1 = Image.open(impath1).convert('RGB')
impath2 = self.flist2[index]
img2 = Image.open(impath2).convert('RGB')
img1 = utils.image2tensor(img1, range_norm=False, half=False)
img2 = utils.image2tensor(img2, range_norm=False, half=False)
if self.transform1 is not None:
img1 = self.transform1(img1)
if self.transform2 is not None:
img2 = self.transform2(img2)
return img1, img2
def __len__(self):
return len(self.flist1)
class PairedImages_w_nameList_npy(Dataset):
'''
can act as supervised or un-supervised based on flists
'''
def __init__(self, flist1, flist2, transform1=None, transform2=None, do_aug=False):
self.flist1 = flist1
self.flist2 = flist2
self.transform1 = transform1
self.transform2 = transform2
self.do_aug = do_aug
def __getitem__(self, index):
impath1 = self.flist1[index]
img1 = np.load(impath1)
impath2 = self.flist2[index]
img2 = np.load(impath2)
if self.transform1 is not None:
img1 = self.transform1(img1)
if self.transform2 is not None:
img2 = self.transform2(img2)
return img1, img2
def __len__(self):
return len(self.flist1)
# def call_paired():
# root1='./GOPRO_3840FPS_AVG_3-21/train/blur/'
# root2='./GOPRO_3840FPS_AVG_3-21/train/sharp/'
# flist1=glob.glob(root1+'/*/*.png')
# flist2=glob.glob(root2+'/*/*.png')
# dset = PairedImages_w_nameList(root1,root2,flist1,flist2)
#### KITTI depth
def load_velodyne_points(filename):
"""Load 3D point cloud from KITTI file format
(adapted from https://github.com/hunse/kitti)
"""
points = np.fromfile(filename, dtype=np.float32).reshape(-1, 4)
points[:, 3] = 1.0 # homogeneous
return points
def read_calib_file(path):
"""Read KITTI calibration file
(from https://github.com/hunse/kitti)
"""
float_chars = set("0123456789.e+- ")
data = {}
with open(path, 'r') as f:
for line in f.readlines():
key, value = line.split(':', 1)
value = value.strip()
data[key] = value
if float_chars.issuperset(value):
# try to cast to float array
try:
data[key] = np.array(list(map(float, value.split(' '))))
except ValueError:
# casting error: data[key] already eq. value, so pass
pass
return data
def sub2ind(matrixSize, rowSub, colSub):
"""Convert row, col matrix subscripts to linear indices
"""
m, n = matrixSize
return rowSub * (n-1) + colSub - 1
def generate_depth_map(calib_dir, velo_filename, cam=2, vel_depth=False):
"""Generate a depth map from velodyne data
"""
# load calibration files
cam2cam = read_calib_file(os.path.join(calib_dir, 'calib_cam_to_cam.txt'))
velo2cam = read_calib_file(os.path.join(calib_dir, 'calib_velo_to_cam.txt'))
velo2cam = np.hstack((velo2cam['R'].reshape(3, 3), velo2cam['T'][..., np.newaxis]))
velo2cam = np.vstack((velo2cam, np.array([0, 0, 0, 1.0])))
# get image shape
im_shape = cam2cam["S_rect_02"][::-1].astype(np.int32)
# compute projection matrix velodyne->image plane
R_cam2rect = np.eye(4)
R_cam2rect[:3, :3] = cam2cam['R_rect_00'].reshape(3, 3)
P_rect = cam2cam['P_rect_0'+str(cam)].reshape(3, 4)
P_velo2im = np.dot(np.dot(P_rect, R_cam2rect), velo2cam)
# load velodyne points and remove all behind image plane (approximation)
# each row of the velodyne data is forward, left, up, reflectance
velo = load_velodyne_points(velo_filename)
velo = velo[velo[:, 0] >= 0, :]
# project the points to the camera
velo_pts_im = np.dot(P_velo2im, velo.T).T
velo_pts_im[:, :2] = velo_pts_im[:, :2] / velo_pts_im[:, 2][..., np.newaxis]
if vel_depth:
velo_pts_im[:, 2] = velo[:, 0]
# check if in bounds
# use minus 1 to get the exact same value as KITTI matlab code
velo_pts_im[:, 0] = np.round(velo_pts_im[:, 0]) - 1
velo_pts_im[:, 1] = np.round(velo_pts_im[:, 1]) - 1
val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0)
val_inds = val_inds & (velo_pts_im[:, 0] < im_shape[1]) & (velo_pts_im[:, 1] < im_shape[0])
velo_pts_im = velo_pts_im[val_inds, :]
# project to image
depth = np.zeros((im_shape[:2]))
depth[velo_pts_im[:, 1].astype(np.int), velo_pts_im[:, 0].astype(np.int)] = velo_pts_im[:, 2]
# find the duplicate points and choose the closest depth
inds = sub2ind(depth.shape, velo_pts_im[:, 1], velo_pts_im[:, 0])
dupe_inds = [item for item, count in Counter(inds).items() if count > 1]
for dd in dupe_inds:
pts = np.where(inds == dd)[0]
x_loc = int(velo_pts_im[pts[0], 0])
y_loc = int(velo_pts_im[pts[0], 1])
depth[y_loc, x_loc] = velo_pts_im[pts, 2].min()
depth[depth < 0] = 0
return depth
def pil_loader(path):
# open path as file to avoid ResourceWarning
# (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
class MonoDataset(data.Dataset):
"""Superclass for monocular dataloaders
Args:
data_path
filenames
height
width
frame_idxs
num_scales
is_train
img_ext
"""
def __init__(self,
data_path,
filenames,
height,
width,
frame_idxs,
num_scales,
is_train=False,
img_ext='.jpg'):
super(MonoDataset, self).__init__()
self.data_path = data_path
self.filenames = filenames
self.height = height
self.width = width
self.num_scales = num_scales
self.interp = Image.ANTIALIAS
self.frame_idxs = frame_idxs
self.is_train = is_train
self.img_ext = img_ext
self.loader = pil_loader
self.to_tensor = transforms.ToTensor()
# We need to specify augmentations differently in newer versions of torchvision.
# We first try the newer tuple version; if this fails we fall back to scalars
try:
self.brightness = (0.8, 1.2)
self.contrast = (0.8, 1.2)
self.saturation = (0.8, 1.2)
self.hue = (-0.1, 0.1)
transforms.ColorJitter.get_params(
self.brightness, self.contrast, self.saturation, self.hue)
except TypeError:
self.brightness = 0.2
self.contrast = 0.2
self.saturation = 0.2
self.hue = 0.1
self.resize = {}
for i in range(self.num_scales):
s = 2 ** i
self.resize[i] = transforms.Resize((self.height // s, self.width // s),
interpolation=self.interp)
self.load_depth = self.check_depth()
def preprocess(self, inputs, color_aug):
"""Resize colour images to the required scales and augment if required
We create the color_aug object in advance and apply the same augmentation to all
images in this item. This ensures that all images input to the pose network receive the
same augmentation.
"""
for k in list(inputs):
frame = inputs[k]
if "color" in k:
n, im, i = k
for i in range(self.num_scales):
inputs[(n, im, i)] = self.resize[i](inputs[(n, im, i - 1)])
for k in list(inputs):
f = inputs[k]
if "color" in k:
n, im, i = k
inputs[(n, im, i)] = self.to_tensor(f)
inputs[(n + "_aug", im, i)] = self.to_tensor(color_aug(f))
def __len__(self):
return len(self.filenames)
def __getitem__(self, index):
"""Returns a single training item from the dataset as a dictionary.
Values correspond to torch tensors.
Keys in the dictionary are either strings or tuples:
("color", <frame_id>, <scale>) for raw colour images,
("color_aug", <frame_id>, <scale>) for augmented colour images,
("K", scale) or ("inv_K", scale) for camera intrinsics,
"stereo_T" for camera extrinsics, and
"depth_gt" for ground truth depth maps.
<frame_id> is either:
an integer (e.g. 0, -1, or 1) representing the temporal step relative to 'index',
or
"s" for the opposite image in the stereo pair.
<scale> is an integer representing the scale of the image relative to the fullsize image:
-1 images at native resolution as loaded from disk
0 images resized to (self.width, self.height )
1 images resized to (self.width // 2, self.height // 2)
2 images resized to (self.width // 4, self.height // 4)
3 images resized to (self.width // 8, self.height // 8)
"""
inputs = {}
do_color_aug = self.is_train and random.random() > 0.5
do_flip = self.is_train and random.random() > 0.5
line = self.filenames[index].split()
folder = line[0]
if len(line) == 3:
frame_index = int(line[1])
else:
frame_index = 0
if len(line) == 3:
side = line[2]
else:
side = None
for i in self.frame_idxs:
if i == "s":
other_side = {"r": "l", "l": "r"}[side]
inputs[("color", i, -1)] = self.get_color(folder, frame_index, other_side, do_flip)
else:
inputs[("color", i, -1)] = self.get_color(folder, frame_index + i, side, do_flip)
# adjusting intrinsics to match each scale in the pyramid
for scale in range(self.num_scales):
K = self.K.copy()
K[0, :] *= self.width // (2 ** scale)
K[1, :] *= self.height // (2 ** scale)
inv_K = np.linalg.pinv(K)
inputs[("K", scale)] = torch.from_numpy(K)
inputs[("inv_K", scale)] = torch.from_numpy(inv_K)
if do_color_aug:
color_aug = transforms.ColorJitter.get_params(
self.brightness, self.contrast, self.saturation, self.hue)
else:
color_aug = (lambda x: x)
self.preprocess(inputs, color_aug)
for i in self.frame_idxs:
del inputs[("color", i, -1)]
del inputs[("color_aug", i, -1)]
if self.load_depth:
depth_gt = self.get_depth(folder, frame_index, side, do_flip)
inputs["depth_gt"] = np.expand_dims(depth_gt, 0)
inputs["depth_gt"] = torch.from_numpy(inputs["depth_gt"].astype(np.float32))
if "s" in self.frame_idxs:
stereo_T = np.eye(4, dtype=np.float32)
baseline_sign = -1 if do_flip else 1
side_sign = -1 if side == "l" else 1
stereo_T[0, 3] = side_sign * baseline_sign * 0.1
inputs["stereo_T"] = torch.from_numpy(stereo_T)
return inputs
def get_color(self, folder, frame_index, side, do_flip):
raise NotImplementedError
def check_depth(self):
raise NotImplementedError
def get_depth(self, folder, frame_index, side, do_flip):
raise NotImplementedError
class KITTIDataset(MonoDataset):
"""Superclass for different types of KITTI dataset loaders
"""
def __init__(self, *args, **kwargs):
super(KITTIDataset, self).__init__(*args, **kwargs)
# NOTE: Make sure your intrinsics matrix is *normalized* by the original image size.
# To normalize you need to scale the first row by 1 / image_width and the second row
# by 1 / image_height. Monodepth2 assumes a principal point to be exactly centered.
# If your principal point is far from the center you might need to disable the horizontal
# flip augmentation.
self.K = np.array([[0.58, 0, 0.5, 0],
[0, 1.92, 0.5, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]], dtype=np.float32)
self.full_res_shape = (1242, 375)
self.side_map = {"2": 2, "3": 3, "l": 2, "r": 3}
def check_depth(self):
line = self.filenames[0].split()
scene_name = line[0]
frame_index = int(line[1])
velo_filename = os.path.join(
self.data_path,
scene_name,
"velodyne_points/data/{:010d}.bin".format(int(frame_index)))
return os.path.isfile(velo_filename)
def get_color(self, folder, frame_index, side, do_flip):
color = self.loader(self.get_image_path(folder, frame_index, side))
if do_flip:
color = color.transpose(Image.FLIP_LEFT_RIGHT)
return color
class KITTIDepthDataset(KITTIDataset):
"""KITTI dataset which uses the updated ground truth depth maps
"""
def __init__(self, *args, **kwargs):
super(KITTIDepthDataset, self).__init__(*args, **kwargs)
def get_image_path(self, folder, frame_index, side):
f_str = "{:010d}{}".format(frame_index, self.img_ext)
image_path = os.path.join(
self.data_path,
folder,
"image_0{}/data".format(self.side_map[side]),
f_str)
return image_path
def get_depth(self, folder, frame_index, side, do_flip):
f_str = "{:010d}.png".format(frame_index)
depth_path = os.path.join(
self.data_path,
folder,
"proj_depth/groundtruth/image_0{}".format(self.side_map[side]),
f_str)
depth_gt = Image.open(depth_path)
depth_gt = depth_gt.resize(self.full_res_shape, Image.NEAREST)
depth_gt = np.array(depth_gt).astype(np.float32) / 256
if do_flip:
depth_gt = np.fliplr(depth_gt)
return depth_gt