ucsahin's picture
Update app.py
a5f9027 verified
raw
history blame
4.17 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
processor = AutoProcessor.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
# model_od = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-Object-Detection-v2", trust_remote_code=True)
model.to("cuda:0")
# model_od.to("cuda:0")
@spaces.GPU
def bot_streaming(message, history, max_tokens, temperature, top_p, top_k, repetition_penalty):
print(max_tokens, temperature, top_p, top_k, repetition_penalty)
if message.files:
image = message.files[-1].path
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0])==tuple:
image = hist[0][0]
if image is None:
gr.Error("Lütfen önce bir resim yükleyin.")
prompt = f"{message.text}"
image = Image.open(image).convert("RGB")
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda:0")
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=max_tokens,
do_sample=True, temperature=temperature, top_p=top_p,
top_k=top_k, repetition_penalty=repetition_penalty
)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"{message.text}\n"
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer[len(text_prompt):]
time.sleep(0.04)
yield generated_text_without_prompt
gr.set_static_paths(paths=["static/images/"])
logo_path = "static/images/logo-color-v2.png"
PLACEHOLDER = f"""
<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 30px">
<img src="/file={logo_path}" style="width: 40%; height: auto; opacity: 80%">
<h3>Resim yükleyin ve bir soru sorun!</h3>
<p>Örnek resim ve soruları kullanabilirsiniz.</p>
</div>
"""
DESCRIPTION = f"""
### 875M parametreli küçük ama çok hızlı bir Türkçe Görsel Dil Modeli 🇹🇷🌟⚡️⚡️🇹🇷
Yüklediğiniz resimleri açıklatabilir ve onlarla ilgili ucu açık sorular sorabilirsiniz 🖼️🤖
Detaylar için [ucsahin/TraVisionLM-base](https://huggingface.co/ucsahin/TraVisionLM-base) kontrol etmeyi unutmayın!
"""
# with gr.Blocks() as demo:
# with gr.Tab("Open-ended Questions (Soru-cevap)"):
with gr.Accordion("Generation parameters", open=False) as parameter_accordion:
max_tokens_item = gr.Slider(64, 1024, value=512, step=64, label="Max tokens")
temperature_item = gr.Slider(0.1, 2, value=0.6, step=0.1, label="Temperature")
top_p_item = gr.Slider(0, 1.0, value=0.9, step=0.05, label="Top_p")
top_k_item = gr.Slider(0, 100, value=50, label="Top_k")
repeat_penalty_item = gr.Slider(0, 2, value=1.2, label="Repeat penalty")
demo = gr.ChatInterface(
title="TraVisionLM - Demo",
description=DESCRIPTION,
fn=bot_streaming,
chatbot=gr.Chatbot(placeholder=PLACEHOLDER, scale=1),
examples=[
[{"text": "Detaylı açıkla", "files":["./family.jpg"]}],
[{"text": "Görüntüde uçaklar ne yapıyor?", "files":["./plane.jpg"]}],
[{"text": "Kısaca açıkla", "files":["./dog.jpg"]}],
[{"text": "Tren istasyonu kalabalık mı yoksa boş mu?", "files":["./train.jpg"]}],
[{"text": "Resimdeki araba hangi renk?", "files":["./car.jpg"]}],
[{"text": "Görüntünün odak noktası nedir?", "files":["./mandog.jpg"]}]
],
additional_inputs=[max_tokens_item, temperature_item, top_p_item, top_k_item, repeat_penalty_item],
additional_inputs_accordion=parameter_accordion,
stop_btn="Stop Generation",
multimodal=True
)
demo.launch(max_file_size="5mb")