avantol's picture
feat(app): UI improvement by adding tables for nodes & properties
e1dd4c7
import copy
import json
import os
import zipfile
import pandas as pd
import gradio as gr
import spaces
import torch
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from schema_to_sql import dd_to_sql
from utils import (
MAX_NEW_TOKENS,
TEMPERATURE,
create_summary_tables,
get_example_ai_model_output_many,
get_example_ai_model_output_simple,
get_prompt_with_files_uploaded,
)
from parsing import try_parsing_actual_model_output
LOCAL_DIR = "tsvs"
ZIP_PATH = "tsvs.zip"
AUTH_TOKEN = os.environ.get("HF_TOKEN", False)
BASE_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
LORA_ADAPTER = "uc-ctds/data-model-curator"
MAX_RETRY_ATTEMPTS = 3
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
model_loaded = False
try:
tokenizer = AutoTokenizer.from_pretrained(
BASE_MODEL, token=AUTH_TOKEN, device_map="auto"
)
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, token=AUTH_TOKEN)
model = model.to("cuda")
model = model.eval()
peft_config = PeftConfig.from_pretrained(LORA_ADAPTER, token=AUTH_TOKEN)
model = PeftModel.from_pretrained(model, LORA_ADAPTER, token=AUTH_TOKEN)
model_loaded = True
except Exception:
print("No HF_TOKEN found. Ensure you follow setup instructions!")
# continue on so setup instructions load
@spaces.GPU(duration=450)
def run_llm_inference(model_prompt):
retry_count = 1
print("Tokenizing Input")
inputs = tokenizer(model_prompt, return_tensors="pt")
inputs = inputs.to(model.device)
prompt_length = inputs["input_ids"].shape[1]
print("Generating Initial Response")
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
)
# Decode and parse output
print("Decoding output")
output_data_model = tokenizer.decode(outputs[0][prompt_length:])
output_data_model = output_data_model.split("<|eot_id|>")[0]
print(output_data_model)
# Test output for JSON schema validity
try:
test_respone = json.loads(output_data_model)
valid_output = True
print("Yay - model passed")
return output_data_model
except:
valid_output = False
while (valid_output is False) and (retry_count <= MAX_RETRY_ATTEMPTS):
print(
f"Attempt {retry_count} did not generate a proper JSON output, proceeding to attempt {retry_count+1} of {MAX_RETRY_ATTEMPTS+1}"
)
retry_count += 1
# Try generating a new response
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
)
output_data_model = tokenizer.decode(outputs[0][prompt_length:])
output_data_model = output_data_model.split("<|eot_id|>")[0]
print(output_data_model)
parsed_output_data_model = try_parsing_actual_model_output(output_data_model)
if "error" not in parsed_output_data_model:
output_data_model = copy.deepcopy(parsed_output_data_model)
# Test output for JSON schema validity
try:
json.loads(output_data_model)
valid_output = True
print("Yay - model passed")
return output_data_model
except:
valid_output = False
# Handle cases when the model fails to generate a proper json schema
if (valid_output is False) and (retry_count > MAX_RETRY_ATTEMPTS):
print(
"Failed To Generate a Proper Schema, try checking the prompt or input TSVs and running again"
)
output_data_model = '{"nodes": [{"name": "Attempt Failed - Check logs for suggested next steps", "links": []}]}'
return output_data_model
def gen_output_from_files_uploaded(filepaths: list[str] = None):
prompt_from_tsv_upload = get_prompt_with_files_uploaded(filepaths)
# Run model to get model response (model_response is a string that needs to be loaded to json)
model_response = run_llm_inference(prompt_from_tsv_upload)
model_response_json = json.loads(model_response)
# Create SQL Code
try:
sql, validation = dd_to_sql(model_response_json)
except Exception:
print(f"Errors converting to SQL, skipping...")
sql = ""
# Create Summary Table
nodes_df, properties_df = pd.DataFrame(), pd.DataFrame()
try:
nodes_df, properties_df = create_summary_tables(model_response_json)
except Exception as exc:
print(f"summary table creation failed: {exc}")
return model_response, sql, nodes_df, properties_df
def gen_output_from_example_simple():
model_response = get_example_ai_model_output_simple()
model_response_json = json.loads(model_response)
sql, validation = dd_to_sql(model_response_json)
nodes_df, properties_df = create_summary_tables(model_response_json)
return model_response, sql, nodes_df, properties_df
def gen_output_from_example_many():
model_response = get_example_ai_model_output_many()
model_response_json = json.loads(model_response)
sql, validation = dd_to_sql(model_response_json)
nodes_df, properties_df = create_summary_tables(model_response_json)
return model_response, sql, nodes_df, properties_df
def zip_tsvs():
tsv_files = [f for f in os.listdir(LOCAL_DIR) if f.endswith(".tsv")]
if not tsv_files:
return None
with zipfile.ZipFile(ZIP_PATH, "w") as zipf:
for file in tsv_files:
file_path = os.path.join(LOCAL_DIR, file)
zipf.write(file_path, arcname=file)
return ZIP_PATH
with gr.Blocks() as demo:
gr.Markdown("# Demonstration of Llama Data Model Generator built with Meta Llama 3")
gr.Markdown("## (Optional) Get Sample TSV(s) to Upload")
gr.Markdown("### Example 1: A Simple TSV")
download_btn = gr.DownloadButton(
label="Download Simple TSV", value="sample_metadata.tsv"
)
gr.Markdown("### Example 2: Many TSVs in a single .zip file.")
download_btn = gr.DownloadButton(label="Download Many TSVs as .zip", value=zip_tsvs)
gr.Markdown("You need to extract the .zip if you want to use them.")
gr.Markdown("## Upload TSVs With Headers (No Data Rows Required)")
files = gr.Files(
label="Upload TSVs",
file_types=[".tsv"],
type="filepath",
)
gr.Markdown(
"Depending on your Huggingface subscription and availability of free GPUs, this can take a few minutes to complete."
)
gr.Markdown(
"Behind the scenes, our [Llama Data Model Generator](https://huggingface.co/uc-ctds/llama-data-model-generator) AI model is being loaded "
"onto GPUs and the TSVs uploaded are being sent to the model in a specialized prompt. "
"For information about the model, please see the model card itself by clicking "
"the link above."
)
# Define Outputs
with gr.Row(equal_height=True):
json_out = gr.Code(
label="Generated Data Model Output",
value=json.dumps([]),
language="json",
interactive=True,
show_label=True,
container=True,
elem_id="json-output",
)
sql_out = gr.Textbox(
label="SQL Defined Relational Schema",
value=[],
show_label=True,
container=True,
)
with gr.Row():
nodes_df_out = gr.Dataframe(label="Generated Node/Table Descriptions")
with gr.Row():
properties_df_out = gr.Dataframe(label="Generated Property Descriptions")
# If files are uploaded, generate prompt and run model
if model_loaded:
files.upload(
fn=gen_output_from_files_uploaded,
inputs=files,
outputs=[json_out, sql_out, nodes_df_out, properties_df_out],
)
gr.Markdown("Run out of FreeGPU or having issues? Try the example outputs!")
demo_btn2 = gr.Button("Manually Load 'Simple' Example Output from Previous Run")
demo_btn2.click(
fn=gen_output_from_example_simple,
outputs=[json_out, sql_out, nodes_df_out, properties_df_out],
)
demo_btn = gr.Button("Manually Load 'Many' Example Output from Previous Run")
demo_btn.click(
fn=gen_output_from_example_many,
outputs=[json_out, sql_out, nodes_df_out, properties_df_out],
)
if __name__ == "__main__":
demo.launch(share=True)