Umang Kaushik commited on
Commit
c2b3f16
·
1 Parent(s): fe1684a

first and final commit

Browse files
Files changed (5) hide show
  1. classifier.ipynb +128 -0
  2. classifier.py +47 -0
  3. dog_breed_model.ipynb +0 -0
  4. export.pkl +3 -0
  5. requirements.txt +6 -0
classifier.ipynb ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "e0bddbd4",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "! pip install -Uqq fastbook\n",
11
+ "import fastbook"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 2,
17
+ "id": "1b46b67e",
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "from fastai.vision.all import *\n",
22
+ "from fastai.vision.widgets import *"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 3,
28
+ "id": "4a089247",
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "import pathlib\n",
33
+ "temp = pathlib.PosixPath\n",
34
+ "pathlib.PosixPath = pathlib.WindowsPath"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": 4,
40
+ "id": "1f07c129",
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "path = Path()\n",
45
+ "learn_inf = load_learner(path/'export.pkl', cpu=True)\n",
46
+ "btn_upload = widgets.FileUpload()\n",
47
+ "out_pl = widgets.Output()\n",
48
+ "lbl_pred = widgets.Label()\n",
49
+ "btn_run = widgets.Button(description='Classify')"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "code",
54
+ "execution_count": 5,
55
+ "id": "b319ee30",
56
+ "metadata": {},
57
+ "outputs": [],
58
+ "source": [
59
+ "def on_click_classify(change):\n",
60
+ " img = PILImage.create(btn_upload.data[-1])\n",
61
+ " out_pl.clear_output()\n",
62
+ " with out_pl: display(img.to_thumb(128,128))\n",
63
+ " pred, pred_idx, probs = learn_inf.predict(img)\n",
64
+ " lbl_pred.value = f'Prediction: {str(pred)[10:]}; Probability: {probs[pred_idx]:.04f}'\n",
65
+ " \n",
66
+ "btn_run.on_click(on_click_classify)"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": 6,
72
+ "id": "114b5a71",
73
+ "metadata": {},
74
+ "outputs": [
75
+ {
76
+ "data": {
77
+ "application/vnd.jupyter.widget-view+json": {
78
+ "model_id": "476e154bfede489a9560404bca8fff16",
79
+ "version_major": 2,
80
+ "version_minor": 0
81
+ },
82
+ "text/plain": [
83
+ "VBox(children=(Label(value='Select your images'), FileUpload(value={}, description='Upload'), Button(descripti…"
84
+ ]
85
+ },
86
+ "metadata": {},
87
+ "output_type": "display_data"
88
+ }
89
+ ],
90
+ "source": [
91
+ "VBox([widgets.Label('Select your images'),\n",
92
+ " btn_upload, btn_run, out_pl, lbl_pred])"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": null,
98
+ "id": "d640937e",
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": []
102
+ }
103
+ ],
104
+ "metadata": {
105
+ "interpreter": {
106
+ "hash": "d925690840644bcd766647b280b19c370132b1426b7601e4e2f280a77c18a034"
107
+ },
108
+ "kernelspec": {
109
+ "display_name": "Python 3 (ipykernel)",
110
+ "language": "python",
111
+ "name": "python3"
112
+ },
113
+ "language_info": {
114
+ "codemirror_mode": {
115
+ "name": "ipython",
116
+ "version": 3
117
+ },
118
+ "file_extension": ".py",
119
+ "mimetype": "text/x-python",
120
+ "name": "python",
121
+ "nbconvert_exporter": "python",
122
+ "pygments_lexer": "ipython3",
123
+ "version": "3.9.7"
124
+ }
125
+ },
126
+ "nbformat": 4,
127
+ "nbformat_minor": 5
128
+ }
classifier.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from fastai.vision.all import *
3
+ from PIL import Image
4
+ import pathlib
5
+ import urllib.request
6
+
7
+ temp = pathlib.PosixPath
8
+ plt = platform.system()
9
+ if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath
10
+
11
+ # MODEL_URL = "https://drive.google.com/uc?export=download&id=1cH5nY1T5oykEcLyWtjA8Wv-Xn8vO20BS"
12
+ # urllib.request.urlretrieve(MODEL_URL, "model.pkl")
13
+
14
+ path = Path()
15
+ path.ls(file_exts='.pkl')
16
+
17
+ learn_inf = load_learner(path/'export.pkl', cpu=True)
18
+ # out_pl = st.image(load_image(image), width=250)
19
+
20
+
21
+ def load_image(img_file):
22
+ img = PILImage.create(img_file)
23
+ return img
24
+
25
+ def on_click_classify(image):
26
+ # load_image(image)
27
+ out_pl = st.image(load_image(image), width=250)
28
+ pred, pred_idx, probs = learn_inf.predict(load_image(image))
29
+ st.write('Prediction: ', str(pred)[10:], '; Probability: ', float(probs[pred_idx]))
30
+
31
+
32
+ st.title('Dog Classifier')
33
+ st.header('Choose your Dog!!')
34
+ image = st.file_uploader(label=' ', type=['png', 'jpg'], key='img', help='upload an img of dog')
35
+
36
+ # picture = st.camera_input(label='Click your dog!')
37
+
38
+
39
+ # btn_run.on_change(on_click_classify)
40
+ btn_run = st.button(label='Classify')
41
+ if btn_run:
42
+ on_click_classify(image)
43
+
44
+
45
+ st.markdown('#### Created by **Umang Kaushik**')
46
+ st.markdown('##### **[Github](https://github.com/Umang-10)**')
47
+
dog_breed_model.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
export.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edf8e8bca20c151ae9b5787c8d1b6c3f3119d7a1c5ef5e1a6a7995c98d55ac60
3
+ size 88116257
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ -f https://download.pytorch.org/whl/torch_stable.html
2
+ torch==1.11.0+cpu
3
+ torchvision==0.12.0+cpu
4
+ fastai>=2.3.1
5
+ streamlit
6
+ pathlib