|  | from dataclasses import dataclass | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torchtune | 
					
						
						|  | from torchtune.models import llama3_2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def llama3_2_1B() -> torchtune.modules.transformer.TransformerDecoder: | 
					
						
						|  | return llama3_2.llama3_2( | 
					
						
						|  | vocab_size=128_256, | 
					
						
						|  | num_layers=16, | 
					
						
						|  | num_heads=32, | 
					
						
						|  | num_kv_heads=8, | 
					
						
						|  | embed_dim=2048, | 
					
						
						|  | max_seq_len=2048, | 
					
						
						|  | intermediate_dim=8192, | 
					
						
						|  | attn_dropout=0.0, | 
					
						
						|  | norm_eps=1e-5, | 
					
						
						|  | rope_base=500_000, | 
					
						
						|  | scale_factor=32, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def llama3_2_100M() -> torchtune.modules.transformer.TransformerDecoder: | 
					
						
						|  | return llama3_2.llama3_2( | 
					
						
						|  | vocab_size=128_256, | 
					
						
						|  | num_layers=4, | 
					
						
						|  | num_heads=8, | 
					
						
						|  | num_kv_heads=2, | 
					
						
						|  | embed_dim=1024, | 
					
						
						|  | max_seq_len=2048, | 
					
						
						|  | intermediate_dim=8192, | 
					
						
						|  | attn_dropout=0.0, | 
					
						
						|  | norm_eps=1e-5, | 
					
						
						|  | rope_base=500_000, | 
					
						
						|  | scale_factor=32, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | FLAVORS = { | 
					
						
						|  | "llama-1B": llama3_2_1B, | 
					
						
						|  | "llama-100M": llama3_2_100M, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prepare_transformer(model): | 
					
						
						|  | embed_dim = model.tok_embeddings.embedding_dim | 
					
						
						|  | model.tok_embeddings = nn.Identity() | 
					
						
						|  | model.output = nn.Identity() | 
					
						
						|  | return model, embed_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _create_causal_mask(seq_len: int, device: torch.device): | 
					
						
						|  | return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | mask: (max_seq_len, max_seq_len) | 
					
						
						|  | input_pos: (batch_size, seq_len) | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | (batch_size, seq_len, max_seq_len) | 
					
						
						|  | """ | 
					
						
						|  | r = mask[input_pos, :] | 
					
						
						|  | return r | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _multinomial_sample_one_no_sync(probs): | 
					
						
						|  | q = torch.empty_like(probs).exponential_(1) | 
					
						
						|  | return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sample_topk(logits: torch.Tensor, topk: int, temperature: float): | 
					
						
						|  | logits = logits / temperature | 
					
						
						|  |  | 
					
						
						|  | filter_value: float = -float("Inf") | 
					
						
						|  | indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None] | 
					
						
						|  | scores_processed = logits.masked_fill(indices_to_remove, filter_value) | 
					
						
						|  | scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1) | 
					
						
						|  | probs = torch.nn.functional.softmax(scores_processed, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | sample_token = _multinomial_sample_one_no_sync(probs) | 
					
						
						|  | return sample_token | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class ModelArgs: | 
					
						
						|  | backbone_flavor: str | 
					
						
						|  | decoder_flavor: str | 
					
						
						|  | text_vocab_size: int | 
					
						
						|  | audio_vocab_size: int | 
					
						
						|  | audio_num_codebooks: int | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Model(nn.Module): | 
					
						
						|  | def __init__(self, args: ModelArgs): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.args = args | 
					
						
						|  |  | 
					
						
						|  | self.backbone, backbone_dim = _prepare_transformer(FLAVORS[args.backbone_flavor]()) | 
					
						
						|  | self.decoder, decoder_dim = _prepare_transformer(FLAVORS[args.decoder_flavor]()) | 
					
						
						|  |  | 
					
						
						|  | self.text_embeddings = nn.Embedding(args.text_vocab_size, backbone_dim) | 
					
						
						|  | self.audio_embeddings = nn.Embedding(args.audio_vocab_size * args.audio_num_codebooks, backbone_dim) | 
					
						
						|  |  | 
					
						
						|  | self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False) | 
					
						
						|  | self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False) | 
					
						
						|  | self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size)) | 
					
						
						|  |  | 
					
						
						|  | def setup_caches(self, max_batch_size: int) -> torch.Tensor: | 
					
						
						|  | """Setup KV caches and return a causal mask.""" | 
					
						
						|  | dtype = next(self.parameters()).dtype | 
					
						
						|  | device = next(self.parameters()).device | 
					
						
						|  |  | 
					
						
						|  | with device: | 
					
						
						|  | self.backbone.setup_caches(max_batch_size, dtype) | 
					
						
						|  | self.decoder.setup_caches(max_batch_size, dtype, decoder_max_seq_len=self.args.audio_num_codebooks) | 
					
						
						|  |  | 
					
						
						|  | self.register_buffer("backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device)) | 
					
						
						|  | self.register_buffer("decoder_causal_mask", _create_causal_mask(self.args.audio_num_codebooks, device)) | 
					
						
						|  |  | 
					
						
						|  | def generate_frame( | 
					
						
						|  | self, | 
					
						
						|  | tokens: torch.Tensor, | 
					
						
						|  | tokens_mask: torch.Tensor, | 
					
						
						|  | input_pos: torch.Tensor, | 
					
						
						|  | temperature: float, | 
					
						
						|  | topk: int, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | tokens: (batch_size, seq_len, audio_num_codebooks+1) | 
					
						
						|  | tokens_mask: (batch_size, seq_len, audio_num_codebooks+1) | 
					
						
						|  | input_pos: (batch_size, seq_len) positions for each token | 
					
						
						|  | mask: (batch_size, seq_len, max_seq_len | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | (batch_size, audio_num_codebooks) sampled tokens | 
					
						
						|  | """ | 
					
						
						|  | dtype = next(self.parameters()).dtype | 
					
						
						|  | b, s, _ = tokens.size() | 
					
						
						|  |  | 
					
						
						|  | assert self.backbone.caches_are_enabled(), "backbone caches are not enabled" | 
					
						
						|  | curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos) | 
					
						
						|  | embeds = self._embed_tokens(tokens) | 
					
						
						|  | masked_embeds = embeds * tokens_mask.unsqueeze(-1) | 
					
						
						|  | h = masked_embeds.sum(dim=2) | 
					
						
						|  | h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to(dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | last_h = h[:, -1, :] | 
					
						
						|  | c0_logits = self.codebook0_head(last_h) | 
					
						
						|  | c0_sample = sample_topk(c0_logits, topk, temperature) | 
					
						
						|  | c0_embed = self._embed_audio(0, c0_sample) | 
					
						
						|  |  | 
					
						
						|  | curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1) | 
					
						
						|  | curr_sample = c0_sample.clone() | 
					
						
						|  | curr_pos = torch.arange(0, curr_h.size(1), device=curr_h.device).unsqueeze(0).repeat(curr_h.size(0), 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.decoder.reset_caches() | 
					
						
						|  | for i in range(1, self.args.audio_num_codebooks): | 
					
						
						|  | curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos) | 
					
						
						|  | decoder_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask).to( | 
					
						
						|  | dtype=dtype | 
					
						
						|  | ) | 
					
						
						|  | ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1]) | 
					
						
						|  | ci_sample = sample_topk(ci_logits, topk, temperature) | 
					
						
						|  | ci_embed = self._embed_audio(i, ci_sample) | 
					
						
						|  |  | 
					
						
						|  | curr_h = ci_embed | 
					
						
						|  | curr_sample = torch.cat([curr_sample, ci_sample], dim=1) | 
					
						
						|  | curr_pos = curr_pos[:, -1:] + 1 | 
					
						
						|  |  | 
					
						
						|  | return curr_sample | 
					
						
						|  |  | 
					
						
						|  | def reset_caches(self): | 
					
						
						|  | self.backbone.reset_caches() | 
					
						
						|  | self.decoder.reset_caches() | 
					
						
						|  |  | 
					
						
						|  | def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.audio_embeddings(tokens + codebook * self.args.audio_vocab_size) | 
					
						
						|  |  | 
					
						
						|  | def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2) | 
					
						
						|  |  | 
					
						
						|  | audio_tokens = tokens[:, :, :-1] + ( | 
					
						
						|  | self.args.audio_vocab_size * torch.arange(self.args.audio_num_codebooks, device=tokens.device) | 
					
						
						|  | ) | 
					
						
						|  | audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape( | 
					
						
						|  | tokens.size(0), tokens.size(1), self.args.audio_num_codebooks, -1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return torch.cat([audio_embeds, text_embeds], dim=-2) | 
					
						
						|  |  |