import gradio as gr | |
from fastai.vision.all import load_learner | |
from PIL import Image | |
model = load_learner('./export.pkl') | |
def classify_image(img): | |
# Convert the image to a format the model expects | |
img = Image.fromarray(img.astype('uint8'), 'RGB') | |
# Make a prediction | |
pred, idx, probs = model.predict(img) | |
# Return the result | |
return {model.dls.vocab[i]: float(probs[i]) for i in range(len(model.dls.vocab))} | |
demo = gr.Interface(fn=classify_image, inputs="image", outputs="label") | |
if __name__ == "__main__": | |
demo.launch() |