Spaces:
Sleeping
Sleeping
Create modeling.py
Browse files- utilities/modeling.py +86 -0
utilities/modeling.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unsloth import FastLanguageModel
|
2 |
+
import torch
|
3 |
+
from trl import SFTTrainer
|
4 |
+
from transformers import TrainingArguments
|
5 |
+
from unsloth import is_bfloat16_supported
|
6 |
+
|
7 |
+
|
8 |
+
def load_model(model_name, max_seq_length):
|
9 |
+
dtype = None
|
10 |
+
load_in_4bit = True
|
11 |
+
|
12 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
13 |
+
model_name = model_name,
|
14 |
+
max_seq_length = max_seq_length,
|
15 |
+
dtype = dtype,
|
16 |
+
load_in_4bit = load_in_4bit,
|
17 |
+
# token = ""
|
18 |
+
)
|
19 |
+
return model, tokenizer
|
20 |
+
|
21 |
+
|
22 |
+
def get_peft(model, peft, max_seq_length, random_seed):
|
23 |
+
|
24 |
+
model = FastLanguageModel.get_peft_model(
|
25 |
+
model,
|
26 |
+
r = peft['r',]
|
27 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
28 |
+
"gate_proj", "up_proj", "down_proj",],
|
29 |
+
lora_alpha = peft['alpha'],
|
30 |
+
lora_dropout = peft['dropout'],
|
31 |
+
bias = peft['bias'],
|
32 |
+
use_gradient_checkpointing = "unsloth",
|
33 |
+
random_state = random_seed,
|
34 |
+
use_rslora = peft['rslora'], # We support rank stabilized LoRA
|
35 |
+
loftq_config = peft['loftq_config'], # And LoftQ
|
36 |
+
)
|
37 |
+
return model
|
38 |
+
|
39 |
+
|
40 |
+
def get_trainer(model, tokenizer, dataset, sft, data_field, max_seq_length, random_seed):
|
41 |
+
|
42 |
+
trainer = SFTTrainer(
|
43 |
+
model = model,
|
44 |
+
tokenizer = tokenizer,
|
45 |
+
train_dataset = dataset,
|
46 |
+
dataset_text_field = data_field,
|
47 |
+
max_seq_length = max_seq_length,
|
48 |
+
dataset_num_proc = 2,
|
49 |
+
packing = False,
|
50 |
+
args = TrainingArguments(
|
51 |
+
per_device_train_batch_size = sft['per_device_train_batch_size'],
|
52 |
+
gradient_accumulation_steps = sft['gradient_accumulation_steps'],
|
53 |
+
warmup_steps = sft['warmup_steps'],
|
54 |
+
num_train_epochs = num_epochs,
|
55 |
+
max_steps = max_steps,
|
56 |
+
learning_rate = sft['learning_rate'],
|
57 |
+
fp16 = not is_bfloat16_supported(),
|
58 |
+
bf16 = is_bfloat16_supported(),
|
59 |
+
logging_steps = sft['logging_steps'],
|
60 |
+
optim = sft['optim'],
|
61 |
+
weight_decay = sft['weight_decay'],
|
62 |
+
lr_scheduler_type = sft['lr_scheduler_type'],
|
63 |
+
seed = random_seed,
|
64 |
+
output_dir = "outputs",
|
65 |
+
),
|
66 |
+
)
|
67 |
+
return trainer
|
68 |
+
|
69 |
+
|
70 |
+
def prepare_trainer(model_name, max_seq_length, random_seed,
|
71 |
+
peft, sft, dataset, data_field):
|
72 |
+
|
73 |
+
print("Loading Model")
|
74 |
+
model, tokenizer = load_model(model_name, max_seq_length)
|
75 |
+
|
76 |
+
print("Preparing for PEFT")
|
77 |
+
model = get_peft(model, peft, max_seq_length, random_seed)
|
78 |
+
|
79 |
+
print("Getting Trainer Model")
|
80 |
+
trainer = get_trainer(model, tokenizer, dataset, data_field, max_seq_length, random_seed)
|
81 |
+
|
82 |
+
return trainer
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
trainer = prepare_trainer()
|
86 |
+
|