Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,205 +1,68 @@
|
|
1 |
-
|
2 |
-
#
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
-
import json
|
6 |
-
|
7 |
-
# Specialized imports
|
8 |
-
#from utilities.modeling import modeling
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
########################### Global objects and functions ###########################
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
class update_visibility:
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
return gr.Dropdown(visible=bool(1))
|
28 |
-
else:
|
29 |
-
return gr.Dropdown(visible=bool(0))
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
return gr.Button(visible=bool(1))
|
35 |
-
else:
|
36 |
-
return gr.Button(visible=bool(0))
|
37 |
|
38 |
-
def upload_vis(radio):
|
39 |
-
value = radio
|
40 |
-
if value == "Upload Your Own":
|
41 |
-
return gr.UploadButton(visible=bool(1)) #make it visible
|
42 |
-
else:
|
43 |
-
return gr.UploadButton(visible=bool(0))
|
44 |
-
@spaces.GPU
|
45 |
-
def train(model_name,
|
46 |
-
inject_prompt,
|
47 |
-
dataset_predefined,
|
48 |
-
peft,
|
49 |
-
sft,
|
50 |
-
max_seq_length,
|
51 |
-
random_seed,
|
52 |
-
num_epochs,
|
53 |
-
max_steps,
|
54 |
-
data_field,
|
55 |
-
repository,
|
56 |
-
model_out_name):
|
57 |
-
"""The model call"""
|
58 |
-
|
59 |
-
# Get models
|
60 |
-
# trainer = modeling(model_name, max_seq_length, random_seed,
|
61 |
-
# peft, sft, dataset, data_field)
|
62 |
-
# trainer_stats = trainer.train()
|
63 |
-
|
64 |
-
# Return outputs of training.
|
65 |
|
66 |
-
return f"Hello!! Using model: {model_name} with template: {inject_prompt}"
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
##################################### App UI #######################################
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
def main():
|
75 |
-
with gr.Blocks() as demo:
|
76 |
-
|
77 |
-
with gr.Tabs():
|
78 |
-
with gr.TabItem("About"):
|
79 |
-
# About page!!
|
80 |
-
gr.Markdown(get_files.load_markdown_file("README.md"))
|
81 |
-
|
82 |
-
with gr.TabItem("Basic Setup"):
|
83 |
-
gr.Markdown("# Select Model and Input details")
|
84 |
-
# Select Model
|
85 |
-
modelnames = conf['model']['choices']
|
86 |
-
model_name = gr.Dropdown(label="Supported Models",
|
87 |
-
choices=modelnames,
|
88 |
-
value=modelnames[0])
|
89 |
-
# Select Generic Model parameters
|
90 |
-
repository = gr.Textbox(label="Your User Name",
|
91 |
-
value=conf['model']['general']["repository"])
|
92 |
-
model_out_name = gr.Textbox(label="Your Model Output Name",
|
93 |
-
value=conf['model']['general']["model_name"])
|
94 |
-
hf_token = gr.Textbox(label="Your Huggingface Token",
|
95 |
-
type='password',
|
96 |
-
value='')
|
97 |
-
|
98 |
-
|
99 |
-
with gr.TabItem("Upload Data"):
|
100 |
-
# Toggle dataset load types
|
101 |
-
gr.Markdown("# Dataset Selection and Upload")
|
102 |
-
|
103 |
-
dataset_choice = gr.Radio(label="Choose Dataset",
|
104 |
-
choices=["Hugging Face Hub Dataset", "Upload Your Own"],
|
105 |
-
value="Hugging Face Hub Dataset")
|
106 |
-
dataset_predefined = gr.Textbox(label="Hugging Face Hub Training Dataset",
|
107 |
-
value='yahma/alpaca-cleaned',
|
108 |
-
visible=True)
|
109 |
-
dataset_predefined_load = gr.Button("Upload Dataset (.csv, .jsonl, or .txt)")
|
110 |
-
|
111 |
-
dataset_uploaded_load = gr.UploadButton(label="Upload Dataset (.csv, .jsonl, or .txt)",
|
112 |
-
file_types=[".csv",".jsonl", ".txt"],
|
113 |
-
visible=False)
|
114 |
-
# Safety output to show if upload succeeded.
|
115 |
-
data_snippet = gr.Markdown()
|
116 |
-
|
117 |
-
# Visibility toggler
|
118 |
-
dataset_choice.change(update_visibility.textbox_vis,
|
119 |
-
dataset_choice,
|
120 |
-
dataset_predefined)
|
121 |
-
dataset_choice.change(update_visibility.upload_vis,
|
122 |
-
dataset_choice,
|
123 |
-
dataset_uploaded_load)
|
124 |
-
dataset_choice.change(update_visibility.textbox_button_vis,
|
125 |
-
dataset_choice,
|
126 |
-
dataset_predefined_load)
|
127 |
-
# Prompt template
|
128 |
-
inject_prompt = gr.Textbox(label="Prompt Template",
|
129 |
-
value=prompt_template())
|
130 |
-
# Dataset buttons
|
131 |
-
dataset_predefined_load.click(fn=get_files.predefined_dataset,
|
132 |
-
inputs=dataset_predefined,
|
133 |
-
outputs=data_snippet)
|
134 |
-
|
135 |
-
dataset_uploaded_load.click(fn=get_files.uploaded_dataset,
|
136 |
-
inputs=dataset_uploaded_load,
|
137 |
-
outputs=data_snippet)
|
138 |
-
|
139 |
-
|
140 |
-
with gr.TabItem("Train Model"):
|
141 |
-
##### Model Parameter Inputs #####
|
142 |
-
gr.Markdown("# Model Parameter Selection")
|
143 |
-
|
144 |
-
# Parameters
|
145 |
-
data_field = gr.Textbox(label="Dataset Training Field Name",
|
146 |
-
value=conf['model']['general']["dataset_text_field"])
|
147 |
-
max_seq_length = gr.Textbox(label="Maximum sequence length",
|
148 |
-
value=conf['model']['general']["max_seq_length"])
|
149 |
-
random_seed = gr.Textbox(label="Seed",
|
150 |
-
value=conf['model']['general']["seed"])
|
151 |
-
num_epochs = gr.Textbox(label="Training Epochs",
|
152 |
-
value=conf['model']['general']["num_train_epochs"])
|
153 |
-
max_steps = gr.Textbox(label="Maximum steps",
|
154 |
-
value=conf['model']['general']["max_steps"])
|
155 |
-
|
156 |
-
# Hyperparameters (allow selection, but hide in accordion.)
|
157 |
-
with gr.Accordion("Advanced Tuning", open=False):
|
158 |
-
|
159 |
-
sftparams = conf['model']['general']
|
160 |
-
# accordion container content
|
161 |
-
dict_string = json.dumps(dict(conf['model']['peft']), indent=4)
|
162 |
-
peft = gr.Textbox(label="PEFT Parameters (json)", value=dict_string)
|
163 |
-
|
164 |
-
dict_string = json.dumps(dict(conf['model']['sft']), indent=4)
|
165 |
-
sft = gr.Textbox(label="SFT Parameters (json)", value=dict_string)
|
166 |
-
|
167 |
-
##### Execution #####
|
168 |
-
|
169 |
-
# Setup buttons
|
170 |
-
tune_btn = gr.Button("Start Fine Tuning")
|
171 |
-
gr.Markdown("### Model Progress")
|
172 |
-
# Text output (for now)
|
173 |
-
output = gr.Textbox(label="Output")
|
174 |
-
|
175 |
-
|
176 |
-
# Data retrieval
|
177 |
-
|
178 |
-
|
179 |
-
# Execute buttons
|
180 |
-
tune_btn.click(fn=train,
|
181 |
-
inputs=[model_name,
|
182 |
-
inject_prompt,
|
183 |
-
dataset_predefined,
|
184 |
-
peft,
|
185 |
-
sft,
|
186 |
-
max_seq_length,
|
187 |
-
random_seed,
|
188 |
-
num_epochs,
|
189 |
-
max_steps,
|
190 |
-
data_field,
|
191 |
-
repository,
|
192 |
-
model_out_name
|
193 |
-
],
|
194 |
-
outputs=output)
|
195 |
-
# stop button
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
demo.launch()
|
201 |
|
202 |
-
##################################### Launch #######################################
|
203 |
|
|
|
204 |
if __name__ == "__main__":
|
205 |
-
|
|
|
|
|
|
1 |
+
###########################
|
2 |
+
# UI for Meeting RAG Q&A. #
|
3 |
+
###########################
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
##################### Imports #####################
|
6 |
+
import gradio as gr
|
7 |
+
from utilities.setup import get_files
|
8 |
+
from server import EmbeddingService, QAService
|
9 |
|
10 |
|
11 |
+
#################### Functions ####################
|
12 |
+
def process_transcripts(files):
|
13 |
+
with EmbeddingService() as e:
|
14 |
+
e.run(files)
|
15 |
+
# some way to wait or a progress bar?
|
16 |
+
return 0
|
17 |
|
|
|
18 |
|
19 |
+
def retrieve_answer(question):
|
20 |
+
with QAService() as q:
|
21 |
+
q.run(question)
|
22 |
+
answer = retriever.answer()
|
23 |
+
return answer
|
24 |
|
|
|
25 |
|
26 |
+
##################### Process #####################
|
27 |
+
def main(conf):
|
28 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
29 |
|
30 |
+
# Main page
|
31 |
+
with gr.TabItem(conf["layout"]["page_names"][0]):
|
32 |
+
gr.Markdown(get_files.load_markdown_file(conf["layout"]["About"]))
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# User config page
|
37 |
+
with gr.TabItem(conf["layout"]["page_names"][1]):
|
38 |
+
gr.Markdown("# Upload Transcript and Necessary Context")
|
39 |
+
gr.Markdown("Please wait as the transcript is being processed.")
|
40 |
+
load_file = gr.UploadButton(label="Upload Transcript (.vtt)",
|
41 |
+
file_types=[".vtt"])
|
42 |
+
goals = gr.Textbox(label="Goals for the Meeting",
|
43 |
+
value=conf["defaults"]["goals"]) # not incorporated yet. Will be with Q&A.
|
44 |
+
repository = gr.Textbox(label="Blank", visible=False) # since there is no output.
|
45 |
+
upload_button.upload(process_transcripts, load_file, repository)
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
# Meeting Question & Answer Page
|
50 |
+
with gr.TabItem(conf["layout"]["page_names"][2]):
|
51 |
+
question = gr.Textbox(label="Ask a Question",
|
52 |
+
value=conf["default"]["question"])
|
53 |
+
ask_button = gr.Button("Ask!")
|
54 |
+
model_output = gr.components.Textbox(label="Answer")
|
55 |
+
dataset_predefined_load.click(fn=retrieve_answer,
|
56 |
+
inputs=question,
|
57 |
+
outputs=model_output)
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
demo.launch()
|
62 |
|
|
|
63 |
|
64 |
+
##################### Execute #####################
|
65 |
if __name__ == "__main__":
|
66 |
+
# Get config
|
67 |
+
conf = get_files.json_cfg()
|
68 |
+
main(conf)
|