Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -62,6 +62,13 @@ class get_datasets:
|
|
62 |
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def train(model_name,
|
67 |
inject_prompt,
|
@@ -97,124 +104,135 @@ def submit_weights(model, repository, model_out_name, token):
|
|
97 |
|
98 |
##################################### App UI #######################################
|
99 |
|
|
|
|
|
100 |
def main():
|
101 |
with gr.Blocks() as demo:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
# Prompt template
|
115 |
-
inject_prompt = gr.Textbox(label="Prompt Template",
|
116 |
-
value=prompt_template())
|
117 |
-
# Dataset choice
|
118 |
-
dataset_choice = gr.Radio(label="Choose Dataset",
|
119 |
-
choices=["Hugging Face Hub Dataset", "Upload Your Own"],
|
120 |
-
value="Hugging Face Hub Dataset")
|
121 |
-
|
122 |
-
dataset_predefined = gr.Textbox(label="Hugging Face Hub Training Dataset",
|
123 |
-
value='yahma/alpaca-cleaned',
|
124 |
-
visible=True)
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
dataset_choice.change(update_visibility.upload_vis,
|
137 |
-
dataset_choice,
|
138 |
-
dataset_uploaded_load)
|
139 |
-
dataset_choice.change(update_visibility.textbox_button_vis,
|
140 |
-
dataset_choice,
|
141 |
-
dataset_predefined_load)
|
142 |
|
143 |
-
# Dataset button
|
144 |
-
dataset_predefined_load.click(fn=get_datasets.predefined_dataset,
|
145 |
-
inputs=dataset_predefined,
|
146 |
-
outputs=data_snippet)
|
147 |
-
|
148 |
-
dataset_uploaded_load.click(fn=get_datasets.uploaded_dataset,
|
149 |
-
inputs=dataset_uploaded_load,
|
150 |
-
outputs=data_snippet)
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
|
155 |
-
|
156 |
-
##### Model Parameter Inputs #####
|
157 |
-
gr.Markdown("### Model Parameter Selection")
|
158 |
-
# Parameters
|
159 |
-
data_field = gr.Textbox(label="Dataset Training Field Name",
|
160 |
-
value=conf['model']['general']["dataset_text_field"])
|
161 |
-
max_seq_length = gr.Textbox(label="Maximum sequence length",
|
162 |
-
value=conf['model']['general']["max_seq_length"])
|
163 |
-
random_seed = gr.Textbox(label="Seed",
|
164 |
-
value=conf['model']['general']["seed"])
|
165 |
-
num_epochs = gr.Textbox(label="Training Epochs",
|
166 |
-
value=conf['model']['general']["num_train_epochs"])
|
167 |
-
max_steps = gr.Textbox(label="Maximum steps",
|
168 |
-
value=conf['model']['general']["max_steps"])
|
169 |
-
repository = gr.Textbox(label="Repository Name",
|
170 |
-
value=conf['model']['general']["repository"])
|
171 |
-
model_out_name = gr.Textbox(label="Model Output Name",
|
172 |
-
value=conf['model']['general']["model_name"])
|
173 |
-
|
174 |
-
# Hyperparameters (allow selection, but hide in accordion.)
|
175 |
-
with gr.Accordion("Advanced Tuning", open=False):
|
176 |
-
|
177 |
-
sftparams = conf['model']['general']
|
178 |
-
# accordion container content
|
179 |
-
dict_string = json.dumps(dict(conf['model']['peft']), indent=4)
|
180 |
-
peft = gr.Textbox(label="PEFT Parameters (json)", value=dict_string)
|
181 |
-
|
182 |
-
dict_string = json.dumps(dict(conf['model']['sft']), indent=4)
|
183 |
-
sft = gr.Textbox(label="SFT Parameters (json)", value=dict_string)
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
# Setup buttons
|
188 |
-
tune_btn = gr.Button("Start Fine Tuning")
|
189 |
-
gr.Markdown("### Model Progress")
|
190 |
-
# Text output (for now)
|
191 |
-
output = gr.Textbox(label="Output")
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
|
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
tune_btn.click(fn=train,
|
199 |
-
inputs=[model_name,
|
200 |
-
inject_prompt,
|
201 |
-
dataset_predefined,
|
202 |
-
peft,
|
203 |
-
sft,
|
204 |
-
max_seq_length,
|
205 |
-
random_seed,
|
206 |
-
num_epochs,
|
207 |
-
max_steps,
|
208 |
-
data_field,
|
209 |
-
repository,
|
210 |
-
model_out_name
|
211 |
-
],
|
212 |
-
outputs=output)
|
213 |
-
# stop button
|
214 |
-
|
215 |
-
# submit button
|
216 |
-
|
217 |
|
|
|
|
|
|
|
|
|
218 |
# Launch baby
|
219 |
demo.launch()
|
220 |
|
|
|
62 |
|
63 |
|
64 |
|
65 |
+
def show_about():
|
66 |
+
return "## About\n\nThis is an application for uploading datasets. You can upload files in .csv, .jsonl, or .txt format. The app will process the file and provide feedback."
|
67 |
+
|
68 |
+
def show_upload():
|
69 |
+
return "## Upload\n\nUse the button below to upload your dataset."
|
70 |
+
|
71 |
+
|
72 |
|
73 |
def train(model_name,
|
74 |
inject_prompt,
|
|
|
104 |
|
105 |
##################################### App UI #######################################
|
106 |
|
107 |
+
|
108 |
+
|
109 |
def main():
|
110 |
with gr.Blocks() as demo:
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column(scale=1, min_width=200): # Sidebar navigation
|
114 |
+
gr.Markdown("### Navigation")
|
115 |
+
btn_about = gr.Button("About")
|
116 |
+
btn_upload = gr.Button("Upload Dataset")
|
117 |
+
with gr.Column(scale=4): # Main content area
|
118 |
+
##### Title Block #####
|
119 |
+
gr.Markdown("# SLM Instruction Tuning with Unsloth")
|
120 |
+
|
121 |
+
##### Initial Model Inputs #####
|
122 |
+
gr.Markdown("### Model Inputs")
|
123 |
+
|
124 |
+
# Select Model
|
125 |
+
modelnames = conf['model']['choices']
|
126 |
+
model_name = gr.Dropdown(label="Supported Models",
|
127 |
+
choices=modelnames,
|
128 |
+
value=modelnames[0])
|
129 |
+
# Prompt template
|
130 |
+
inject_prompt = gr.Textbox(label="Prompt Template",
|
131 |
+
value=prompt_template())
|
132 |
+
# Dataset choice
|
133 |
+
dataset_choice = gr.Radio(label="Choose Dataset",
|
134 |
+
choices=["Hugging Face Hub Dataset", "Upload Your Own"],
|
135 |
+
value="Hugging Face Hub Dataset")
|
136 |
|
137 |
+
dataset_predefined = gr.Textbox(label="Hugging Face Hub Training Dataset",
|
138 |
+
value='yahma/alpaca-cleaned',
|
139 |
+
visible=True)
|
140 |
+
|
141 |
+
dataset_predefined_load = gr.Button("Upload Dataset (.csv, .jsonl, or .txt)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
dataset_uploaded_load = gr.UploadButton(label="Upload Dataset (.csv, .jsonl, or .txt)",
|
144 |
+
file_types=[".csv",".jsonl", ".txt"],
|
145 |
+
visible=False)
|
146 |
+
data_snippet = gr.Markdown()
|
147 |
+
|
148 |
+
dataset_choice.change(update_visibility.textbox_vis,
|
149 |
+
dataset_choice,
|
150 |
+
dataset_predefined)
|
151 |
+
dataset_choice.change(update_visibility.upload_vis,
|
152 |
+
dataset_choice,
|
153 |
+
dataset_uploaded_load)
|
154 |
+
dataset_choice.change(update_visibility.textbox_button_vis,
|
155 |
+
dataset_choice,
|
156 |
+
dataset_predefined_load)
|
157 |
+
|
158 |
+
# Dataset button
|
159 |
+
dataset_predefined_load.click(fn=get_datasets.predefined_dataset,
|
160 |
+
inputs=dataset_predefined,
|
161 |
+
outputs=data_snippet)
|
162 |
|
163 |
+
dataset_uploaded_load.click(fn=get_datasets.uploaded_dataset,
|
164 |
+
inputs=dataset_uploaded_load,
|
165 |
+
outputs=data_snippet)
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
##### Model Parameter Inputs #####
|
172 |
+
gr.Markdown("### Model Parameter Selection")
|
173 |
+
# Parameters
|
174 |
+
data_field = gr.Textbox(label="Dataset Training Field Name",
|
175 |
+
value=conf['model']['general']["dataset_text_field"])
|
176 |
+
max_seq_length = gr.Textbox(label="Maximum sequence length",
|
177 |
+
value=conf['model']['general']["max_seq_length"])
|
178 |
+
random_seed = gr.Textbox(label="Seed",
|
179 |
+
value=conf['model']['general']["seed"])
|
180 |
+
num_epochs = gr.Textbox(label="Training Epochs",
|
181 |
+
value=conf['model']['general']["num_train_epochs"])
|
182 |
+
max_steps = gr.Textbox(label="Maximum steps",
|
183 |
+
value=conf['model']['general']["max_steps"])
|
184 |
+
repository = gr.Textbox(label="Repository Name",
|
185 |
+
value=conf['model']['general']["repository"])
|
186 |
+
model_out_name = gr.Textbox(label="Model Output Name",
|
187 |
+
value=conf['model']['general']["model_name"])
|
188 |
|
189 |
+
# Hyperparameters (allow selection, but hide in accordion.)
|
190 |
+
with gr.Accordion("Advanced Tuning", open=False):
|
191 |
|
192 |
+
sftparams = conf['model']['general']
|
193 |
+
# accordion container content
|
194 |
+
dict_string = json.dumps(dict(conf['model']['peft']), indent=4)
|
195 |
+
peft = gr.Textbox(label="PEFT Parameters (json)", value=dict_string)
|
196 |
+
|
197 |
+
dict_string = json.dumps(dict(conf['model']['sft']), indent=4)
|
198 |
+
sft = gr.Textbox(label="SFT Parameters (json)", value=dict_string)
|
199 |
+
|
200 |
+
##### Execution #####
|
201 |
+
|
202 |
+
# Setup buttons
|
203 |
+
tune_btn = gr.Button("Start Fine Tuning")
|
204 |
+
gr.Markdown("### Model Progress")
|
205 |
+
# Text output (for now)
|
206 |
+
output = gr.Textbox(label="Output")
|
207 |
+
|
208 |
+
|
209 |
+
# Data retrieval
|
210 |
+
|
211 |
+
|
212 |
+
# Execute buttons
|
213 |
+
tune_btn.click(fn=train,
|
214 |
+
inputs=[model_name,
|
215 |
+
inject_prompt,
|
216 |
+
dataset_predefined,
|
217 |
+
peft,
|
218 |
+
sft,
|
219 |
+
max_seq_length,
|
220 |
+
random_seed,
|
221 |
+
num_epochs,
|
222 |
+
max_steps,
|
223 |
+
data_field,
|
224 |
+
repository,
|
225 |
+
model_out_name
|
226 |
+
],
|
227 |
+
outputs=output)
|
228 |
+
# stop button
|
229 |
|
230 |
+
# submit button
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
# Link buttons to functions
|
233 |
+
btn_about.click(fn=show_about, outputs=main_content)
|
234 |
+
btn_upload.click(fn=lambda: ("", gr.update(visible=True)), outputs=[main_content, dataset_uploaded_load])
|
235 |
+
|
236 |
# Launch baby
|
237 |
demo.launch()
|
238 |
|