tyagipulkit commited on
Commit
6e80ca6
1 Parent(s): 849985d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +123 -0
app.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !pip install -q -U google-generativeai
2
+
3
+ import tensorflow as tf
4
+ import numpy as np
5
+ from PIL import Image
6
+ from numpy import asarray
7
+ import gradio as gr
8
+ import google.generativeai as genai
9
+ #import cv2
10
+
11
+ print("Dependency Imported Successfully!")
12
+
13
+
14
+ GOOGLE_API_KEY = "AIzaSyA4pL0voDE0py8q8iXtQNQRYYMx_UdFeLk"
15
+ genai.configure(api_key=GOOGLE_API_KEY)
16
+ model = genai.GenerativeModel('gemini-pro')
17
+
18
+
19
+ #kindly add model path here (Save model in your drive and copy path and paste it below)
20
+ model_path="./Models/"
21
+
22
+ sugarcane_model = tf.keras.models.load_model(f"{model_path}sugracane.h5")
23
+ tomato_model = tf.keras.models.load_model(f"{model_path}Tomato.h5")
24
+ corn_model = tf.keras.models.load_model(f"{model_path}Corn.h5")
25
+ potato_model = tf.keras.models.load_model(f"{model_path}Potato.h5")
26
+ rice_model = tf.keras.models.load_model(f"{model_path}Rice.h5")
27
+ wheat_model = tf.keras.models.load_model(f"{model_path}Wheat.h5")
28
+
29
+
30
+ print("Models Imported Successfully!")
31
+
32
+ pred_class = "Plant"
33
+
34
+
35
+ def predict(model,class_name,img):
36
+ global pred_class
37
+ img = tf.image.resize(img, (256, 256))
38
+ img_array = tf.keras.preprocessing.image.img_to_array(img)
39
+ img_array = tf.expand_dims(img_array, 0)
40
+ predictions = model.predict(img_array)
41
+ predicted_class = class_name[np.argmax(predictions[0])]
42
+ confidence = round(100 * (np.max(predictions[0])), 2)
43
+ pred_class = predicted_class
44
+ return predicted_class,f"{confidence} %"
45
+
46
+
47
+
48
+
49
+ def generate_output(crop,Leaf_Image):
50
+ if crop=="Sugarcane":
51
+ sugarcane_classes = ['Sugarcane___Bacterial_Blight', 'Sugarcane___Healthy', 'Sugarcane___Red_Rot']
52
+ #sugarcane_model = tf.keras.models.load_model(f"{model_path}sugracane.h5")
53
+ return predict(sugarcane_model,sugarcane_classes,Leaf_Image)
54
+
55
+ if crop=="Tomato":
56
+ tomato_classes = ['Tomato___Bacterial_spot','Tomato___Early_blight','Tomato___Late_blight','Tomato___healthy']
57
+ #tomato_model = tf.keras.models.load_model(f"{model_path}Tomato.h5")
58
+ return predict(tomato_model,tomato_classes,Leaf_Image)
59
+
60
+ if crop=="Corn":
61
+ corn_classes = ['Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot','Corn_(maize)___Common_rust_','Corn_(maize)___Northern_Leaf_Blight','Corn_(maize)___healthy']
62
+ #corn_model = tf.keras.models.load_model(f"{model_path}Corn.h5")
63
+ return predict(corn_model,corn_classes,Leaf_Image)
64
+
65
+ if crop=="Potato":
66
+ potato_classes = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']
67
+ #potato_model = tf.keras.models.load_model(f"{model_path}Potato.h5")
68
+ return predict(potato_model,potato_classes,Leaf_Image)
69
+
70
+ if crop=="Rice":
71
+ rice_classes = ['Rice___Brown_Spot', 'Rice___Healthy', 'Rice___Hispa', 'Rice___Leaf_Blast']
72
+ #rice_model = tf.keras.models.load_model(f"{model_path}Rice.h5")
73
+ return predict(rice_model,rice_classes,Leaf_Image)
74
+
75
+ if crop=="Wheat":
76
+ wheat_classes = ['Wheat___Brown_Rust', 'Wheat___Healthy', 'Wheat___Yellow_Rust']
77
+ #wheat_model = tf.keras.models.load_model(f"{model_path}Wheat.h5")
78
+ return predict(wheat_model,wheat_classes,Leaf_Image)
79
+
80
+
81
+ def transform_history(history):
82
+ new_history = []
83
+ new_history.append({"parts": [{"text": "You are a Agriculture experts named PlantDoc, that specializes in Plant Diseases"}], "role": "user"})
84
+ new_history.append({"parts": [{"text": "ok"}], "role": "model"})
85
+ print(history)
86
+ for chat in history:
87
+ new_history.append({"parts": [{"text": chat[0]}], "role": "user"})
88
+ new_history.append({"parts": [{"text": chat[1]}], "role": "model"})
89
+ return new_history
90
+
91
+
92
+
93
+ def response(message, history):
94
+ global chat
95
+ # The history will be the same as in Gradio, the 'Undo' and 'Clear' buttons will work correctly.
96
+ chat.history = transform_history(history)
97
+ response = chat.send_message(message)
98
+ response.resolve()
99
+
100
+ # Each character of the answer is displayed
101
+ for i in range(len(response.text)):
102
+ time.sleep(0.01)
103
+ yield response.text[: i+1]
104
+ css = """
105
+ #textbox {height: 700px;}
106
+ """
107
+
108
+ with gr.Blocks(css=css) as demo:
109
+ with gr.Row():
110
+ with gr.Column():
111
+ leaf_img = gr.Image(type="numpy",label="Upload Plant's Leaf Image")
112
+ with gr.Column():
113
+ crop = gr.Radio(["Potato", "Tomato", "Wheat","Rice","Corn","Sugarcane"], label="Crop", info="Please Select a Crop?")
114
+ disease = gr.Textbox(label="Disease Predicted :- ")
115
+ confi = gr.Textbox(label="Level of Condidence:- ")
116
+ with gr.Row():
117
+ with gr.Column(elem_id="textbox"):
118
+ greet_btn = gr.Button("Predict")
119
+ greet_btn.click(fn=generate_output, inputs=[crop,leaf_img], outputs=[disease,confi], api_name="predict")
120
+ gr.ChatInterface(fn=response,examples=["Give me more Info about this disease!", "How to treat this Plant disease!"], title="Talk to PlantDoc(AI Expert).")
121
+ if __name__ == "__main__":
122
+ chat = model.start_chat(history=[])
123
+ demo.launch()