Spaces:
Runtime error
Runtime error
xtwigs
commited on
Commit
·
2b20905
1
Parent(s):
2fb514b
demo
Browse files- app.py +123 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, BartTokenizer, BartForConditionalGeneration, pipeline
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from textstat import textstat
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
MAX_LEN = 256
|
10 |
+
NUM_BEAMS = 4
|
11 |
+
EARLY_STOPPING = True
|
12 |
+
N_OUT = 4
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
cwi_tok = AutoTokenizer.from_pretrained('twigs/cwi-regressor')
|
17 |
+
cwi_model = AutoModelForSequenceClassification.from_pretrained('twigs/cwi-regressor')
|
18 |
+
simpl_tok = BartTokenizer.from_pretrained('twigs/bart-text2text-simplifier')
|
19 |
+
simpl_model = BartForConditionalGeneration.from_pretrained('twigs/bart-text2text-simplifier')
|
20 |
+
cwi_pipe = pipeline('text-classification', model=cwi_model, tokenizer=cwi_tok, function_to_apply='none', device=0)
|
21 |
+
fill_pipe = pipeline('fill-mask', model=simpl_model, tokenizer=simpl_tok, top_k=1, device=0)
|
22 |
+
|
23 |
+
|
24 |
+
def id_replace_complex(s, threshold=0.4):
|
25 |
+
|
26 |
+
# get all tokens
|
27 |
+
tokens = re.compile('\w+').findall(s)
|
28 |
+
cands = [f"{t}. {s}" for t in tokens]
|
29 |
+
# get complex tokens
|
30 |
+
# if score >= threshold select tokens[idx]
|
31 |
+
compl_tok = [tokens[idx] for idx, x in enumerate(
|
32 |
+
cwi_pipe(cands)) if x['score'] >= threshold]
|
33 |
+
|
34 |
+
# potentially parallelizable, depends on desired behaviour
|
35 |
+
for t in compl_tok:
|
36 |
+
idx = s.index(t)
|
37 |
+
s = s[:idx] + '<mask>' + s[idx+len(t):]
|
38 |
+
# get top candidate for mask fill in complex token
|
39 |
+
s = fill_pipe(s)[0]['sequence']
|
40 |
+
|
41 |
+
return s, compl_tok
|
42 |
+
|
43 |
+
|
44 |
+
def generate_candidate_text(s, model, tokenizer, tokenized=False):
|
45 |
+
|
46 |
+
out = simpl_tok([s], max_length=256, padding="max_length", truncation=True, return_tensors='pt').to('cuda') if not tokenized else s
|
47 |
+
|
48 |
+
generated_ids = model.generate(
|
49 |
+
input_ids=out['input_ids'],
|
50 |
+
attention_mask=out['attention_mask'],
|
51 |
+
use_cache=True,
|
52 |
+
decoder_start_token_id=simpl_model.config.pad_token_id,
|
53 |
+
num_beams=NUM_BEAMS,
|
54 |
+
max_length=MAX_LEN,
|
55 |
+
early_stopping=EARLY_STOPPING,
|
56 |
+
num_return_sequences=N_OUT
|
57 |
+
)
|
58 |
+
|
59 |
+
return [tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[
|
60 |
+
1:] for ids in generated_ids]
|
61 |
+
|
62 |
+
|
63 |
+
def rank_candidate_text(sentences):
|
64 |
+
""" Currently being done with simple FKGL """
|
65 |
+
fkgl_scores = [textstat.flesch_kincaid_grade(s) for s in sentences]
|
66 |
+
return sentences[np.argmin(fkgl_scores)]
|
67 |
+
|
68 |
+
|
69 |
+
def full_pipeline(source, simpl_model, simpl_tok, tokens, lexical=False):
|
70 |
+
|
71 |
+
modified, complex_words = id_replace_complex(source, threshold=0.2) if lexical else source, None
|
72 |
+
cands = generate_candidate_text(tokens+modified, simpl_model, simpl_tok)
|
73 |
+
output = rank_candidate_text(cands)
|
74 |
+
return output, complex_words
|
75 |
+
|
76 |
+
|
77 |
+
aug_tok = ['c_', 'lev_', 'dep_', 'rank_', 'rat_', 'n_syl_']
|
78 |
+
tokens = ['CharRatio', 'LevSim', 'DependencyTreeDepth',
|
79 |
+
'WordComplexity', 'WordRatio']
|
80 |
+
|
81 |
+
default_values = [0.8, 0.6, 0.9, 0.8, 0.9, 1.9]
|
82 |
+
user_values = default_values
|
83 |
+
tok_values = dict((t, default_values[idx]) for idx, t in enumerate(tokens))
|
84 |
+
|
85 |
+
example_sentences = ["A matchbook is a small cardboard folder (matchcover) enclosing a quantity of matches and having a coarse striking surface on the exterior.",
|
86 |
+
"If there are no strong land use controls, buildings are built along a bypass, converting it into an ordinary town road, and the bypass may eventually become as congested as the local streets it was intended to avoid.",
|
87 |
+
"Plot Captain Caleb Holt (Kirk Cameron) is a firefighter in Albany, Georgia and firmly keeps the cardinal rule of all firemen, \"Never leave your partner behind\".",
|
88 |
+
"Britpop emerged from the British independent music scene of the early 1990s and was characterised by bands influenced by British guitar pop music of the 1960s and 1970s."]
|
89 |
+
|
90 |
+
|
91 |
+
def main():
|
92 |
+
|
93 |
+
st.title("Make it Simple")
|
94 |
+
|
95 |
+
with st.expander("Example sentences"):
|
96 |
+
for s in example_sentences:
|
97 |
+
st.code(body=s)
|
98 |
+
|
99 |
+
with st.form(key="form"):
|
100 |
+
input_sentence = st.text_area("Original sentence")
|
101 |
+
tok = st.multiselect(
|
102 |
+
label="Tokens to augment the sentence", options=tokens, default=tokens)
|
103 |
+
if (tok):
|
104 |
+
st.text("Select the desired intensity")
|
105 |
+
for idx, t in enumerate(tok):
|
106 |
+
user_values[idx] = st.slider(
|
107 |
+
t, min_value=0., max_value=1., value=tok_values[t], step=0.1, key=t)
|
108 |
+
|
109 |
+
submit = st.form_submit_button("Process")
|
110 |
+
if (submit):
|
111 |
+
|
112 |
+
tokens = [t+str(v) for t, v in zip(aug_tok, user_values)]
|
113 |
+
output, words = full_pipeline(input_sentence, simpl_model, simpl_tok, tokens)
|
114 |
+
|
115 |
+
with st.container():
|
116 |
+
st.write("Original sentence:")
|
117 |
+
st.write(input_sentence)
|
118 |
+
st.write("Output sentence:")
|
119 |
+
st.write(output)
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == '__main__':
|
123 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
numpy
|
4 |
+
textstat
|