|
import streamlit as st |
|
from transformers import pipeline |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_model(): |
|
classifier = pipeline("text-classification", model="tweetpie/toxic-content-classifier") |
|
return classifier |
|
|
|
|
|
st.title("Toxic Content Classifier Dashboard") |
|
|
|
|
|
st.sidebar.header("Configuration") |
|
model_selection = st.sidebar.selectbox( |
|
"Select a model", |
|
options=['alm', 'blm'], |
|
index=0 |
|
) |
|
|
|
|
|
st.sidebar.header("Entities") |
|
pro_entities = st.sidebar.text_input("Pro Entities", help="Enter pro entities separated by commas") |
|
anti_entities = st.sidebar.text_input("Anti Entities", help="Enter anti entities separated by commas") |
|
neutral_entities = st.sidebar.text_input("Neutral Entities", help="Enter neutral entities separated by commas") |
|
|
|
st.sidebar.header("Aspects") |
|
pro_aspects = st.sidebar.text_input("Pro Aspects", help="Enter pro aspects separated by commas") |
|
anti_aspects = st.sidebar.text_input("Anti Aspects", help="Enter anti aspects separated by commas") |
|
neutral_aspects = st.sidebar.text_input("Neutral Aspects", help="Enter neutral aspects separated by commas") |
|
|
|
generate_button = st.sidebar.button("Generate") |
|
|
|
|
|
classifier = load_model() |
|
|
|
|
|
if generate_button: |
|
with st.spinner('Processing...'): |
|
|
|
input_text = "I love you" |
|
model_output = classifier(input_text) |
|
|
|
|
|
st.write(f"Input Text: {input_text}") |
|
st.write("Model Output:", model_output) |
|
|