Spaces:
Runtime error
Runtime error
tuyendragon
commited on
Commit
·
6bb8996
1
Parent(s):
de8099e
Upload 4 files
Browse files- ingest.py +159 -0
- localGPT_UI.py +119 -0
- run_localGPT.py +246 -0
- run_localGPT_API.py +173 -0
ingest.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
|
4 |
+
|
5 |
+
import click
|
6 |
+
import torch
|
7 |
+
from langchain.docstore.document import Document
|
8 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
+
from langchain.text_splitter import Language, RecursiveCharacterTextSplitter
|
10 |
+
from langchain.vectorstores import Chroma
|
11 |
+
|
12 |
+
from constants import (
|
13 |
+
CHROMA_SETTINGS,
|
14 |
+
DOCUMENT_MAP,
|
15 |
+
EMBEDDING_MODEL_NAME,
|
16 |
+
INGEST_THREADS,
|
17 |
+
PERSIST_DIRECTORY,
|
18 |
+
SOURCE_DIRECTORY,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def load_single_document(file_path: str) -> Document:
|
23 |
+
# Loads a single document from a file path
|
24 |
+
file_extension = os.path.splitext(file_path)[1]
|
25 |
+
loader_class = DOCUMENT_MAP.get(file_extension)
|
26 |
+
if loader_class:
|
27 |
+
loader = loader_class(file_path)
|
28 |
+
else:
|
29 |
+
raise ValueError("Document type is undefined")
|
30 |
+
return loader.load()[0]
|
31 |
+
|
32 |
+
|
33 |
+
def load_document_batch(filepaths):
|
34 |
+
logging.info("Loading document batch")
|
35 |
+
# create a thread pool
|
36 |
+
with ThreadPoolExecutor(len(filepaths)) as exe:
|
37 |
+
# load files
|
38 |
+
futures = [exe.submit(load_single_document, name) for name in filepaths]
|
39 |
+
# collect data
|
40 |
+
data_list = [future.result() for future in futures]
|
41 |
+
# return data and file paths
|
42 |
+
return (data_list, filepaths)
|
43 |
+
|
44 |
+
|
45 |
+
def load_documents(source_dir: str) -> list[Document]:
|
46 |
+
# Loads all documents from the source documents directory
|
47 |
+
all_files = os.listdir(source_dir)
|
48 |
+
paths = []
|
49 |
+
for file_path in all_files:
|
50 |
+
file_extension = os.path.splitext(file_path)[1]
|
51 |
+
source_file_path = os.path.join(source_dir, file_path)
|
52 |
+
if file_extension in DOCUMENT_MAP.keys():
|
53 |
+
paths.append(source_file_path)
|
54 |
+
|
55 |
+
# Have at least one worker and at most INGEST_THREADS workers
|
56 |
+
n_workers = min(INGEST_THREADS, max(len(paths), 1))
|
57 |
+
chunksize = round(len(paths) / n_workers)
|
58 |
+
docs = []
|
59 |
+
with ProcessPoolExecutor(n_workers) as executor:
|
60 |
+
futures = []
|
61 |
+
# split the load operations into chunks
|
62 |
+
for i in range(0, len(paths), chunksize):
|
63 |
+
# select a chunk of filenames
|
64 |
+
filepaths = paths[i : (i + chunksize)]
|
65 |
+
# submit the task
|
66 |
+
future = executor.submit(load_document_batch, filepaths)
|
67 |
+
futures.append(future)
|
68 |
+
# process all results
|
69 |
+
for future in as_completed(futures):
|
70 |
+
# open the file and load the data
|
71 |
+
contents, _ = future.result()
|
72 |
+
docs.extend(contents)
|
73 |
+
|
74 |
+
return docs
|
75 |
+
|
76 |
+
|
77 |
+
def split_documents(documents: list[Document]) -> tuple[list[Document], list[Document]]:
|
78 |
+
# Splits documents for correct Text Splitter
|
79 |
+
text_docs, python_docs = [], []
|
80 |
+
for doc in documents:
|
81 |
+
file_extension = os.path.splitext(doc.metadata["source"])[1]
|
82 |
+
if file_extension == ".py":
|
83 |
+
python_docs.append(doc)
|
84 |
+
else:
|
85 |
+
text_docs.append(doc)
|
86 |
+
|
87 |
+
return text_docs, python_docs
|
88 |
+
|
89 |
+
|
90 |
+
@click.command()
|
91 |
+
@click.option(
|
92 |
+
"--device_type",
|
93 |
+
default="cuda" if torch.cuda.is_available() else "cpu",
|
94 |
+
type=click.Choice(
|
95 |
+
[
|
96 |
+
"cpu",
|
97 |
+
"cuda",
|
98 |
+
"ipu",
|
99 |
+
"xpu",
|
100 |
+
"mkldnn",
|
101 |
+
"opengl",
|
102 |
+
"opencl",
|
103 |
+
"ideep",
|
104 |
+
"hip",
|
105 |
+
"ve",
|
106 |
+
"fpga",
|
107 |
+
"ort",
|
108 |
+
"xla",
|
109 |
+
"lazy",
|
110 |
+
"vulkan",
|
111 |
+
"mps",
|
112 |
+
"meta",
|
113 |
+
"hpu",
|
114 |
+
"mtia",
|
115 |
+
],
|
116 |
+
),
|
117 |
+
help="Device to run on. (Default is cuda)",
|
118 |
+
)
|
119 |
+
def main(device_type):
|
120 |
+
# Load documents and split in chunks
|
121 |
+
logging.info(f"Loading documents from {SOURCE_DIRECTORY}")
|
122 |
+
documents = load_documents(SOURCE_DIRECTORY)
|
123 |
+
text_documents, python_documents = split_documents(documents)
|
124 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
125 |
+
python_splitter = RecursiveCharacterTextSplitter.from_language(
|
126 |
+
language=Language.PYTHON, chunk_size=880, chunk_overlap=200
|
127 |
+
)
|
128 |
+
texts = text_splitter.split_documents(text_documents)
|
129 |
+
texts.extend(python_splitter.split_documents(python_documents))
|
130 |
+
logging.info(f"Loaded {len(documents)} documents from {SOURCE_DIRECTORY}")
|
131 |
+
logging.info(f"Split into {len(texts)} chunks of text")
|
132 |
+
|
133 |
+
# Create embeddings
|
134 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
135 |
+
model_name=EMBEDDING_MODEL_NAME,
|
136 |
+
model_kwargs={"device": device_type},
|
137 |
+
)
|
138 |
+
# change the embedding type here if you are running into issues.
|
139 |
+
# These are much smaller embeddings and will work for most appications
|
140 |
+
# If you use HuggingFaceEmbeddings, make sure to also use the same in the
|
141 |
+
# run_localGPT.py file.
|
142 |
+
|
143 |
+
# embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
144 |
+
|
145 |
+
db = Chroma.from_documents(
|
146 |
+
texts,
|
147 |
+
embeddings,
|
148 |
+
persist_directory=PERSIST_DIRECTORY,
|
149 |
+
client_settings=CHROMA_SETTINGS,
|
150 |
+
)
|
151 |
+
db.persist()
|
152 |
+
db = None
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
logging.basicConfig(
|
157 |
+
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
|
158 |
+
)
|
159 |
+
main()
|
localGPT_UI.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import subprocess
|
3 |
+
import streamlit as st
|
4 |
+
from run_localGPT import load_model
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
|
7 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain.memory import ConversationBufferMemory
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
def model_memory():
|
16 |
+
# Adding history to the model.
|
17 |
+
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer,\
|
18 |
+
just say that you don't know, don't try to make up an answer.
|
19 |
+
|
20 |
+
{context}
|
21 |
+
|
22 |
+
{history}
|
23 |
+
Question: {question}
|
24 |
+
Helpful Answer:"""
|
25 |
+
|
26 |
+
prompt = PromptTemplate(input_variables=["history", "context", "question"], template=template)
|
27 |
+
memory = ConversationBufferMemory(input_key="question", memory_key="history")
|
28 |
+
|
29 |
+
return prompt, memory
|
30 |
+
|
31 |
+
# Sidebar contents
|
32 |
+
with st.sidebar:
|
33 |
+
st.title('🤗💬 Converse with your Data')
|
34 |
+
st.markdown('''
|
35 |
+
## About
|
36 |
+
This app is an LLM-powered chatbot built using:
|
37 |
+
- [Streamlit](https://streamlit.io/)
|
38 |
+
- [LangChain](https://python.langchain.com/)
|
39 |
+
- [LocalGPT](https://github.com/PromtEngineer/localGPT)
|
40 |
+
|
41 |
+
''')
|
42 |
+
add_vertical_space(5)
|
43 |
+
st.write('Made with ❤️ by [Prompt Engineer](https://youtube.com/@engineerprompt)')
|
44 |
+
|
45 |
+
|
46 |
+
DEVICE_TYPE = "cuda" if torch.cuda.is_available() else "cpu"
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
if "result" not in st.session_state:
|
51 |
+
# Run the document ingestion process.
|
52 |
+
run_langest_commands = ["python", "ingest.py"]
|
53 |
+
run_langest_commands.append("--device_type")
|
54 |
+
run_langest_commands.append(DEVICE_TYPE)
|
55 |
+
|
56 |
+
result = subprocess.run(run_langest_commands, capture_output=True)
|
57 |
+
st.session_state.result = result
|
58 |
+
|
59 |
+
# Define the retreiver
|
60 |
+
# load the vectorstore
|
61 |
+
if "EMBEDDINGS" not in st.session_state:
|
62 |
+
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
|
63 |
+
st.session_state.EMBEDDINGS = EMBEDDINGS
|
64 |
+
|
65 |
+
if "DB" not in st.session_state:
|
66 |
+
DB = Chroma(
|
67 |
+
persist_directory=PERSIST_DIRECTORY,
|
68 |
+
embedding_function=st.session_state.EMBEDDINGS,
|
69 |
+
client_settings=CHROMA_SETTINGS,
|
70 |
+
)
|
71 |
+
st.session_state.DB = DB
|
72 |
+
|
73 |
+
if "RETRIEVER" not in st.session_state:
|
74 |
+
RETRIEVER = DB.as_retriever()
|
75 |
+
st.session_state.RETRIEVER = RETRIEVER
|
76 |
+
|
77 |
+
if "LLM" not in st.session_state:
|
78 |
+
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
|
79 |
+
st.session_state["LLM"] = LLM
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
if "QA" not in st.session_state:
|
85 |
+
|
86 |
+
prompt, memory = model_memory()
|
87 |
+
|
88 |
+
QA = RetrievalQA.from_chain_type(
|
89 |
+
llm=LLM,
|
90 |
+
chain_type="stuff",
|
91 |
+
retriever=RETRIEVER,
|
92 |
+
return_source_documents=True,
|
93 |
+
chain_type_kwargs={"prompt": prompt, "memory": memory},
|
94 |
+
)
|
95 |
+
st.session_state["QA"] = QA
|
96 |
+
|
97 |
+
st.title('LocalGPT App 💬')
|
98 |
+
# Create a text input box for the user
|
99 |
+
prompt = st.text_input('Input your prompt here')
|
100 |
+
# while True:
|
101 |
+
|
102 |
+
# If the user hits enter
|
103 |
+
if prompt:
|
104 |
+
# Then pass the prompt to the LLM
|
105 |
+
response = st.session_state["QA"](prompt)
|
106 |
+
answer, docs = response["result"], response["source_documents"]
|
107 |
+
# ...and write it out to the screen
|
108 |
+
st.write(answer)
|
109 |
+
|
110 |
+
# With a streamlit expander
|
111 |
+
with st.expander('Document Similarity Search'):
|
112 |
+
# Find the relevant pages
|
113 |
+
search = st.session_state.DB.similarity_search_with_score(prompt)
|
114 |
+
# Write out the first
|
115 |
+
for i, doc in enumerate(search):
|
116 |
+
# print(doc)
|
117 |
+
st.write(f"Source Document # {i+1} : {doc[0].metadata['source'].split('/')[-1]}")
|
118 |
+
st.write(doc[0].page_content)
|
119 |
+
st.write("--------------------------------")
|
run_localGPT.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import click
|
4 |
+
import torch
|
5 |
+
from auto_gptq import AutoGPTQForCausalLM
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
+
from langchain.llms import HuggingFacePipeline, LlamaCpp
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
|
13 |
+
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
14 |
+
from langchain.vectorstores import Chroma
|
15 |
+
from transformers import (
|
16 |
+
AutoModelForCausalLM,
|
17 |
+
AutoTokenizer,
|
18 |
+
GenerationConfig,
|
19 |
+
LlamaForCausalLM,
|
20 |
+
LlamaTokenizer,
|
21 |
+
pipeline,
|
22 |
+
)
|
23 |
+
|
24 |
+
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
|
25 |
+
|
26 |
+
|
27 |
+
def load_model(device_type, model_id, model_basename=None):
|
28 |
+
"""
|
29 |
+
Select a model for text generation using the HuggingFace library.
|
30 |
+
If you are running this for the first time, it will download a model for you.
|
31 |
+
subsequent runs will use the model from the disk.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
device_type (str): Type of device to use, e.g., "cuda" for GPU or "cpu" for CPU.
|
35 |
+
model_id (str): Identifier of the model to load from HuggingFace's model hub.
|
36 |
+
model_basename (str, optional): Basename of the model if using quantized models.
|
37 |
+
Defaults to None.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
HuggingFacePipeline: A pipeline object for text generation using the loaded model.
|
41 |
+
|
42 |
+
Raises:
|
43 |
+
ValueError: If an unsupported model or device type is provided.
|
44 |
+
"""
|
45 |
+
logging.info(f"Loading Model: {model_id}, on: {device_type}")
|
46 |
+
logging.info("This action can take a few minutes!")
|
47 |
+
|
48 |
+
if model_basename is not None:
|
49 |
+
if ".ggml" in model_basename:
|
50 |
+
logging.info("Using Llamacpp for GGML quantized models")
|
51 |
+
model_path = hf_hub_download(repo_id=model_id, filename=model_basename)
|
52 |
+
max_ctx_size = 2048
|
53 |
+
kwargs = {
|
54 |
+
"model_path": model_path,
|
55 |
+
"n_ctx": max_ctx_size,
|
56 |
+
"max_tokens": max_ctx_size,
|
57 |
+
}
|
58 |
+
if device_type.lower() == "mps":
|
59 |
+
kwargs["n_gpu_layers"] = 1000
|
60 |
+
if device_type.lower() == "cuda":
|
61 |
+
kwargs["n_gpu_layers"] = 1000
|
62 |
+
kwargs["n_batch"] = max_ctx_size
|
63 |
+
return LlamaCpp(**kwargs)
|
64 |
+
|
65 |
+
else:
|
66 |
+
# The code supports all huggingface models that ends with GPTQ and have some variation
|
67 |
+
# of .no-act.order or .safetensors in their HF repo.
|
68 |
+
logging.info("Using AutoGPTQForCausalLM for quantized models")
|
69 |
+
|
70 |
+
if ".safetensors" in model_basename:
|
71 |
+
# Remove the ".safetensors" ending if present
|
72 |
+
model_basename = model_basename.replace(".safetensors", "")
|
73 |
+
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
75 |
+
logging.info("Tokenizer loaded")
|
76 |
+
|
77 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
78 |
+
model_id,
|
79 |
+
model_basename=model_basename,
|
80 |
+
use_safetensors=True,
|
81 |
+
trust_remote_code=True,
|
82 |
+
device="cuda:0",
|
83 |
+
use_triton=False,
|
84 |
+
quantize_config=None,
|
85 |
+
)
|
86 |
+
elif (
|
87 |
+
device_type.lower() == "cuda"
|
88 |
+
): # The code supports all huggingface models that ends with -HF or which have a .bin
|
89 |
+
# file in their HF repo.
|
90 |
+
logging.info("Using AutoModelForCausalLM for full models")
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
92 |
+
logging.info("Tokenizer loaded")
|
93 |
+
|
94 |
+
model = AutoModelForCausalLM.from_pretrained(
|
95 |
+
model_id,
|
96 |
+
device_map="auto",
|
97 |
+
torch_dtype=torch.float16,
|
98 |
+
low_cpu_mem_usage=True,
|
99 |
+
trust_remote_code=True,
|
100 |
+
# max_memory={0: "15GB"} # Uncomment this line with you encounter CUDA out of memory errors
|
101 |
+
)
|
102 |
+
model.tie_weights()
|
103 |
+
else:
|
104 |
+
logging.info("Using LlamaTokenizer")
|
105 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_id)
|
106 |
+
model = LlamaForCausalLM.from_pretrained(model_id)
|
107 |
+
|
108 |
+
# Load configuration from the model to avoid warnings
|
109 |
+
generation_config = GenerationConfig.from_pretrained(model_id)
|
110 |
+
# see here for details:
|
111 |
+
# https://huggingface.co/docs/transformers/
|
112 |
+
# main_classes/text_generation#transformers.GenerationConfig.from_pretrained.returns
|
113 |
+
|
114 |
+
# Create a pipeline for text generation
|
115 |
+
pipe = pipeline(
|
116 |
+
"text-generation",
|
117 |
+
model=model,
|
118 |
+
tokenizer=tokenizer,
|
119 |
+
max_length=2048,
|
120 |
+
temperature=0,
|
121 |
+
top_p=0.95,
|
122 |
+
repetition_penalty=1.15,
|
123 |
+
generation_config=generation_config,
|
124 |
+
)
|
125 |
+
|
126 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
127 |
+
logging.info("Local LLM Loaded")
|
128 |
+
|
129 |
+
return local_llm
|
130 |
+
|
131 |
+
|
132 |
+
# chose device typ to run on as well as to show source documents.
|
133 |
+
@click.command()
|
134 |
+
@click.option(
|
135 |
+
"--device_type",
|
136 |
+
default="cuda" if torch.cuda.is_available() else "cpu",
|
137 |
+
type=click.Choice(
|
138 |
+
[
|
139 |
+
"cpu",
|
140 |
+
"cuda",
|
141 |
+
"ipu",
|
142 |
+
"xpu",
|
143 |
+
"mkldnn",
|
144 |
+
"opengl",
|
145 |
+
"opencl",
|
146 |
+
"ideep",
|
147 |
+
"hip",
|
148 |
+
"ve",
|
149 |
+
"fpga",
|
150 |
+
"ort",
|
151 |
+
"xla",
|
152 |
+
"lazy",
|
153 |
+
"vulkan",
|
154 |
+
"mps",
|
155 |
+
"meta",
|
156 |
+
"hpu",
|
157 |
+
"mtia",
|
158 |
+
],
|
159 |
+
),
|
160 |
+
help="Device to run on. (Default is cuda)",
|
161 |
+
)
|
162 |
+
@click.option(
|
163 |
+
"--show_sources",
|
164 |
+
"-s",
|
165 |
+
is_flag=True,
|
166 |
+
help="Show sources along with answers (Default is False)",
|
167 |
+
)
|
168 |
+
def main(device_type, show_sources):
|
169 |
+
"""
|
170 |
+
This function implements the information retrieval task.
|
171 |
+
|
172 |
+
|
173 |
+
1. Loads an embedding model, can be HuggingFaceInstructEmbeddings or HuggingFaceEmbeddings
|
174 |
+
2. Loads the existing vectorestore that was created by inget.py
|
175 |
+
3. Loads the local LLM using load_model function - You can now set different LLMs.
|
176 |
+
4. Setup the Question Answer retreival chain.
|
177 |
+
5. Question answers.
|
178 |
+
"""
|
179 |
+
|
180 |
+
logging.info(f"Running on: {device_type}")
|
181 |
+
logging.info(f"Display Source Documents set to: {show_sources}")
|
182 |
+
|
183 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": device_type})
|
184 |
+
|
185 |
+
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
|
186 |
+
# embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
187 |
+
|
188 |
+
# load the vectorstore
|
189 |
+
db = Chroma(
|
190 |
+
persist_directory=PERSIST_DIRECTORY,
|
191 |
+
embedding_function=embeddings,
|
192 |
+
client_settings=CHROMA_SETTINGS,
|
193 |
+
)
|
194 |
+
retriever = db.as_retriever()
|
195 |
+
|
196 |
+
|
197 |
+
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer,\
|
198 |
+
just say that you don't know, don't try to make up an answer.
|
199 |
+
|
200 |
+
{context}
|
201 |
+
|
202 |
+
{history}
|
203 |
+
Question: {question}
|
204 |
+
Helpful Answer:"""
|
205 |
+
|
206 |
+
prompt = PromptTemplate(input_variables=["history", "context", "question"], template=template)
|
207 |
+
memory = ConversationBufferMemory(input_key="question", memory_key="history")
|
208 |
+
|
209 |
+
llm = load_model(device_type, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
|
210 |
+
|
211 |
+
qa = RetrievalQA.from_chain_type(
|
212 |
+
llm=llm,
|
213 |
+
chain_type="stuff",
|
214 |
+
retriever=retriever,
|
215 |
+
return_source_documents=True,
|
216 |
+
chain_type_kwargs={"prompt": prompt, "memory": memory},
|
217 |
+
)
|
218 |
+
# Interactive questions and answers
|
219 |
+
while True:
|
220 |
+
query = input("\nEnter a query: ")
|
221 |
+
if query == "exit":
|
222 |
+
break
|
223 |
+
# Get the answer from the chain
|
224 |
+
res = qa(query)
|
225 |
+
answer, docs = res["result"], res["source_documents"]
|
226 |
+
|
227 |
+
# Print the result
|
228 |
+
print("\n\n> Question:")
|
229 |
+
print(query)
|
230 |
+
print("\n> Answer:")
|
231 |
+
print(answer)
|
232 |
+
|
233 |
+
if show_sources: # this is a flag that you can set to disable showing answers.
|
234 |
+
# # Print the relevant sources used for the answer
|
235 |
+
print("----------------------------------SOURCE DOCUMENTS---------------------------")
|
236 |
+
for document in docs:
|
237 |
+
print("\n> " + document.metadata["source"] + ":")
|
238 |
+
print(document.page_content)
|
239 |
+
print("----------------------------------SOURCE DOCUMENTS---------------------------")
|
240 |
+
|
241 |
+
|
242 |
+
if __name__ == "__main__":
|
243 |
+
logging.basicConfig(
|
244 |
+
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
|
245 |
+
)
|
246 |
+
main()
|
run_localGPT_API.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import subprocess
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from auto_gptq import AutoGPTQForCausalLM
|
8 |
+
from flask import Flask, jsonify, request
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
11 |
+
|
12 |
+
# from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
+
from langchain.llms import HuggingFacePipeline
|
14 |
+
from run_localGPT import load_model
|
15 |
+
|
16 |
+
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
17 |
+
from langchain.vectorstores import Chroma
|
18 |
+
from transformers import (
|
19 |
+
AutoModelForCausalLM,
|
20 |
+
AutoTokenizer,
|
21 |
+
GenerationConfig,
|
22 |
+
LlamaForCausalLM,
|
23 |
+
LlamaTokenizer,
|
24 |
+
pipeline,
|
25 |
+
)
|
26 |
+
from werkzeug.utils import secure_filename
|
27 |
+
|
28 |
+
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
|
29 |
+
|
30 |
+
DEVICE_TYPE = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
SHOW_SOURCES = True
|
32 |
+
logging.info(f"Running on: {DEVICE_TYPE}")
|
33 |
+
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")
|
34 |
+
|
35 |
+
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
|
36 |
+
|
37 |
+
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
|
38 |
+
# EMBEDDINGS = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
39 |
+
if os.path.exists(PERSIST_DIRECTORY):
|
40 |
+
try:
|
41 |
+
shutil.rmtree(PERSIST_DIRECTORY)
|
42 |
+
except OSError as e:
|
43 |
+
print(f"Error: {e.filename} - {e.strerror}.")
|
44 |
+
else:
|
45 |
+
print("The directory does not exist")
|
46 |
+
|
47 |
+
run_langest_commands = ["python", "ingest.py"]
|
48 |
+
if DEVICE_TYPE == "cpu":
|
49 |
+
run_langest_commands.append("--device_type")
|
50 |
+
run_langest_commands.append(DEVICE_TYPE)
|
51 |
+
|
52 |
+
result = subprocess.run(run_langest_commands, capture_output=True)
|
53 |
+
if result.returncode != 0:
|
54 |
+
raise FileNotFoundError(
|
55 |
+
"No files were found inside SOURCE_DOCUMENTS, please put a starter file inside before starting the API!"
|
56 |
+
)
|
57 |
+
|
58 |
+
# load the vectorstore
|
59 |
+
DB = Chroma(
|
60 |
+
persist_directory=PERSIST_DIRECTORY,
|
61 |
+
embedding_function=EMBEDDINGS,
|
62 |
+
client_settings=CHROMA_SETTINGS,
|
63 |
+
)
|
64 |
+
|
65 |
+
RETRIEVER = DB.as_retriever()
|
66 |
+
|
67 |
+
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
|
68 |
+
|
69 |
+
QA = RetrievalQA.from_chain_type(
|
70 |
+
llm=LLM, chain_type="stuff", retriever=RETRIEVER, return_source_documents=SHOW_SOURCES
|
71 |
+
)
|
72 |
+
|
73 |
+
app = Flask(__name__)
|
74 |
+
|
75 |
+
|
76 |
+
@app.route("/api/delete_source", methods=["GET"])
|
77 |
+
def delete_source_route():
|
78 |
+
folder_name = "SOURCE_DOCUMENTS"
|
79 |
+
|
80 |
+
if os.path.exists(folder_name):
|
81 |
+
shutil.rmtree(folder_name)
|
82 |
+
|
83 |
+
os.makedirs(folder_name)
|
84 |
+
|
85 |
+
return jsonify({"message": f"Folder '{folder_name}' successfully deleted and recreated."})
|
86 |
+
|
87 |
+
|
88 |
+
@app.route("/api/save_document", methods=["GET", "POST"])
|
89 |
+
def save_document_route():
|
90 |
+
if "document" not in request.files:
|
91 |
+
return "No document part", 400
|
92 |
+
file = request.files["document"]
|
93 |
+
if file.filename == "":
|
94 |
+
return "No selected file", 400
|
95 |
+
if file:
|
96 |
+
filename = secure_filename(file.filename)
|
97 |
+
folder_path = "SOURCE_DOCUMENTS"
|
98 |
+
if not os.path.exists(folder_path):
|
99 |
+
os.makedirs(folder_path)
|
100 |
+
file_path = os.path.join(folder_path, filename)
|
101 |
+
file.save(file_path)
|
102 |
+
return "File saved successfully", 200
|
103 |
+
|
104 |
+
|
105 |
+
@app.route("/api/run_ingest", methods=["GET"])
|
106 |
+
def run_ingest_route():
|
107 |
+
global DB
|
108 |
+
global RETRIEVER
|
109 |
+
global QA
|
110 |
+
try:
|
111 |
+
if os.path.exists(PERSIST_DIRECTORY):
|
112 |
+
try:
|
113 |
+
shutil.rmtree(PERSIST_DIRECTORY)
|
114 |
+
except OSError as e:
|
115 |
+
print(f"Error: {e.filename} - {e.strerror}.")
|
116 |
+
else:
|
117 |
+
print("The directory does not exist")
|
118 |
+
|
119 |
+
run_langest_commands = ["python", "ingest.py"]
|
120 |
+
if DEVICE_TYPE == "cpu":
|
121 |
+
run_langest_commands.append("--device_type")
|
122 |
+
run_langest_commands.append(DEVICE_TYPE)
|
123 |
+
|
124 |
+
result = subprocess.run(run_langest_commands, capture_output=True)
|
125 |
+
if result.returncode != 0:
|
126 |
+
return "Script execution failed: {}".format(result.stderr.decode("utf-8")), 500
|
127 |
+
# load the vectorstore
|
128 |
+
DB = Chroma(
|
129 |
+
persist_directory=PERSIST_DIRECTORY,
|
130 |
+
embedding_function=EMBEDDINGS,
|
131 |
+
client_settings=CHROMA_SETTINGS,
|
132 |
+
)
|
133 |
+
RETRIEVER = DB.as_retriever()
|
134 |
+
|
135 |
+
QA = RetrievalQA.from_chain_type(
|
136 |
+
llm=LLM, chain_type="stuff", retriever=RETRIEVER, return_source_documents=SHOW_SOURCES
|
137 |
+
)
|
138 |
+
return "Script executed successfully: {}".format(result.stdout.decode("utf-8")), 200
|
139 |
+
except Exception as e:
|
140 |
+
return f"Error occurred: {str(e)}", 500
|
141 |
+
|
142 |
+
|
143 |
+
@app.route("/api/prompt_route", methods=["GET", "POST"])
|
144 |
+
def prompt_route():
|
145 |
+
global QA
|
146 |
+
user_prompt = request.form.get("user_prompt")
|
147 |
+
if user_prompt:
|
148 |
+
# print(f'User Prompt: {user_prompt}')
|
149 |
+
# Get the answer from the chain
|
150 |
+
res = QA(user_prompt)
|
151 |
+
answer, docs = res["result"], res["source_documents"]
|
152 |
+
|
153 |
+
prompt_response_dict = {
|
154 |
+
"Prompt": user_prompt,
|
155 |
+
"Answer": answer,
|
156 |
+
}
|
157 |
+
|
158 |
+
prompt_response_dict["Sources"] = []
|
159 |
+
for document in docs:
|
160 |
+
prompt_response_dict["Sources"].append(
|
161 |
+
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
|
162 |
+
)
|
163 |
+
|
164 |
+
return jsonify(prompt_response_dict), 200
|
165 |
+
else:
|
166 |
+
return "No user prompt received", 400
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
logging.basicConfig(
|
171 |
+
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
|
172 |
+
)
|
173 |
+
app.run(debug=False, port=5110)
|